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AFIT- ENP-DS-13-M-03 

 

Abstract 

 

The Baranger model is used to compute collisional broadening and shift of the D1 and 

D2 spectral lines of M + Ng, where M = K, Rb, Cs and Ng = He, Ne, Ar, using scattering 

phase shift differences which are calculated from scattering matrix elements.  Scattering 

matrix elements are calculated using the Channel Packet Method where the collisions are 

treated non-adiabatically and include spin-orbit and Coriolis couplings.  Non-adiabatic 

wavepacket dynamics are determined using the split-operator method together with a 

unitary transformation between adiabatic and diabatic representations.  Scattering phase 

shift differences are thermally weighted and integrated over energies ranging from E = 0 

Hartree up to E = 0.0075 Hartree and averaged over values of total angular momentum 

that range from J = 0.5 up to J = 400.5.  Phase shifts are extrapolated linearly to provide 

an approximate extension of the energy regime up to E = 0.012 Hartree.  Broadening and 

shift coefficients are obtained for temperatures ranging from T = 100 K up to T = 800 K 

and compared with experiment.  Predictions from this research find application in laser 

physics and specifically with improvement of total power output of Optically Pumped 

Alkali Laser systems.
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COLLISIONAL BROADENING AND SHIFT OF D1 AND D2 SPECTRAL LINES 

IN ATOMIC ALKALI VAPOR - NOBLE GAS SYSTEMS 

 

I.  Introduction 

This chapter introduces the dissertation research and its documentation.  Section 1.1 

provides the motivation for the research including its potential connection with ongoing 

experimental work and USAF research interests.  Section 1.2 provides a basic summary 

of the objectives for this research.  Section 1.3 concludes this chapter with an overview of 

the dissertation. 

 

1.1.  Motivation 

 Early descriptions of the broadening and shifting of atomic spectral lines resulted 

in the ubiquitous s, p, d, ... notation, where s and d described sharp and diffuse spectral 

line shapes.  This qualitative description was used in atomic spectroscopy before the 

principles of quantum mechanics had been developed.  The first quantum-based efforts to 

describe the broadening and shifting of spectral lines began with Weisskopf, who 

attempted the first quantum description of line broadening using a WKB approximation 

in a semiclassical approach (Weisskopf, 1932a, 1932b), and Jabloński, who also used a 

WKB approximation but treated collisions quantum mechanically (Jabloński, 1945).  

These efforts culminated in the three principal models of Anderson-Talman (Anderson, 

1949, 1952; Anderson and Talman, 1956; Tsao and Curnette, 1962), Baranger (Baranger 

1958a, 1958b, 1958c, 1962), and Szudy-Baylis (Szudy and Baylis, 1977, 1996). 

 The Anderson-Talman model is a semiclassical model that uses the difference 

potential corresponding to the spectral line to be examined.  This model assumes a 

classical straight-line trajectory of the perturber atom in the reference frame of the 

emitter/absorber atom and integrates collisions over the set of all possible impact 

parameters.  Only the spectral line itself is treated quantum-mechanically.  Usually the 
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difference potential to be used is either modeled as a Lennard-Jones potential or fit to the 

functional form of a Lennard-Jones potential (Jones, 1924a, 1924b).  Experimental 

techniques include working Anderson-Talman in reverse, starting with the line shape, to 

estimate Lennard-Jones potential coefficients (Pitz, Wertepny, and Perram, 2009; Pitz, 

Fox, and Perram, 2010).  Recent theoretical efforts have integrated the Anderson-Talman 

model rigorously using full ab initio interaction potentials (Blank, Weeks, and Kedziora, 

2012).  While the Anderson-Talman model does predict the full spectral line shape, 

including core and satellite features (Smith, Cooper, and Roszman, 1973), it is not a fully 

quantum-mechanical model.  Because Anderson-Talman generates broadening and shift 

coefficients for each potential energy surface, it does not intrinsically handle coupling 

between surfaces during a collision, though an average can be estimated to handle 

coupled surfaces that contribute to a given spectral line.  Lennard-Jones potentials can be 

constructed which under the Anderson-Talman model give results that compare well with 

experiment (Allard, Sahal-Brechot, and Biraud, 1974; Kielkopf and Knollenberg, 1975; 

Kielkopf, 1976; Kielkopf and Allard, 1979; Allard, Biraud, and Chevillot, 1988; Ciurylo 

and Szudy, 1997; Allard, Royer, Kielkopf, and Feautrier, 1999; Alioua and Bouledroua, 

2006; Alioua, Bouledroua, Allouche, and Aubert-Frécon, 2008; Allouche, Alioua, 

Bouledroua, and Aubert-Frécon, 2009), but the constructed Lennard-Jones potentials do 

not correspond to physical potential energy surfaces. 

 The Baranger model builds directly from the work of Jabloński and is a fully 

quantum-mechanical model.  Like Anderson-Talman, Baranger assumes the reference 

frame of the emitter/absorber atom.  Baranger uses the impact approximation, which 

assumes that the duration of a collision is much shorter than the time between collisions.  

The impact limit forces one to focus more on the core features of the collision-broadened 

spectral line than on the wings or satellite features.  Allard introduces an approximation 

of the Baranger model to include coupling (Allard and Kielkopf, 1982).  Ciurylo and 

Szudy attempt to extend the Baranger model away from the impact limit to account for 

finite collision duration (Ciurylo and Szudy, 2001).  The only predictions found in the 

literature have calculated broadening and shift under adiabatic potentials for lighter alkali 

(Li, Na, K) perturbed by He (Leo, Peach, and Whittingham, 2000; Mullamphy, Peach, 
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Venturi, Whittingham, and Gibson, 2007), primarily for astrophysical application.  These 

calculations are limited by the semi-classical treatment of collisions (Peach, 2010) and 

the neglect of fine structure transitions (Mullamphy, Peach, Venturi, Whittingham, and 

Gibson, 2007). 

 The Szudy-Baylis model is a quantum-mechanical model that seeks to predict 

satellite features of spectral line shapes; that is, features that occur relatively far from the 

core of the spectral line.  For these satellite features, the impact approximation breaks 

down (Szudy & Baylis, 1996).  The Szudy-Baylis model uses Franck-Condon factors, 

radial overlap integrals of the final and initial one-perturber wavefunctions, to calculate 

features in the wings (or satellite features) of spectral lines.  Calculations using the 

Szudy-Baylis model have given results for satellite features which compare well with 

experiment (Mies, Julienne, Band, and Singer, 1986; Alioua and Bouledroua, 2006; 

Alioua, Bouledroua, Allouche, and Aubert-Frécon, 2008). 

   Recent interest in the behavior of the non-adiabatic fine structure transitions of 

atomic alkali as they collide with noble gases has been generated by applications in 

astrophysics and the development of Optically Pumped Alkali Lasers (OPALs) 

(Rotondaro and Perram, 1997; Krupke, Beach, Kanz, and Payne, 2003; Beach, Krupke, 

Kanz, Payne, Dubinskii, and Merkle, 2004; Zhdanov, Ehrenreich, and Knize, 2006; Pitz, 

Wertepny, and Perram, 2009; Pitz, Fox, and Perram, 2010).  Theoretical motivations 

include the study of line shapes to discover information about the potential energy 

surfaces that governs collisions between alkali and noble gases.  Astrophysical 

applications include diagnostics for alkali environment, specifically in the measurement 

of spectral lines of alkali mixed with helium.  Brown dwarf stars, in particular, have 

atmospheres that consist largely of helium with relatively small concentrations of light 

alkali such as lithium.  Understanding the effects of collisional (or pressure) broadening 

can lead to a better understanding of the particular compositions of observed stellar 

atmospheres (Zhu, 2005, 2006; Mullamphy, 2007).  OPAL applications include the 

broadening of spectral lines to increase absorption of energy from the optical pump.  The 

analysis and modeling of pressure broadening and shifting of spectral lines has been 
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central to the study of spectroscopy.  An Optically Pumped Alkali Laser (OPAL) utilizes 

an array of diode lasers as a pump source and an alkali vapor – noble gas mixture as a 

gain medium.  Krupke specifies the goals for an OPAL system, “Application end-users 

continue to call for multi-kilowatt lasers with near-diffraction-limited output beam 

quality, wavelengths of < 1060 nm, higher efficiency and compactness, and decreased 

cost-of-ownership, compared to traditional lamp-pumped Nd:YAG solid state lasers and 

electrically-pumped CO2 gas lasers” (Krupke, 2003).  However, an OPAL is limited by 

two major factors:  (1) the emission spectrum of the optical pump, and (2) the absorption 

spectrum of the alkali vapor – noble gas gain medium.  The spectrum of the diode pump 

laser generally is much broader than the absorption lines of the gain medium, so much of 

the pump laser energy is lost in the system.  There is ongoing research in the field of laser 

physics toward correcting both limiting factors, narrowing the emission spectra of optical 

pumps and broadening the absorption spectra of alkali vapor gain media.  This 

dissertation focuses on the latter—investigation of collisional line broadening in the 

alkali vapor – noble gas system as an attempt to mitigate power loss by broadening the 

absorption lines of the gain medium to better match the pump laser emission 

characteristics. 

 

1.2. Objectives 

 This research uses the Baranger model to simulate collisional line broadening of 

relevant alkali vapor – noble gas mixtures under varied conditions (e.g., varying 

temperature and pressure).  The particular mixtures of interest are those in typical use in 

OPAL systems.  In principle, this examination should be applicable to any mixture of 

alkali vapor (Li, Na, K, Rb, Cs, or Fr) and noble gas (He, Ne, Ar, Kr, Xe, or Rn).  

However, the D2 transitions for K, Rb, and Cs lie between 760 and 850 nm, an optical 

band in which the atmosphere is transparent.  Powerful and efficient commercial off-the-

shelf (COTS) laser diodes are available in this optical band (Krupke, 2003).  The 

resulting OPAL system must radiate in wavelengths that transmit in Earth’s atmosphere; 

if the laser attenuates significantly in the atmosphere, it is not useful because energy 
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cannot be delivered reliably and substantially to the target.  As an additional limitation on 

mixtures, the spin-orbit splitting is small enough in Li and Na series that it is difficult to 

pump the D2 line without also pumping the D1 line.  This significantly hinders the energy 

level population that is necessary for lasing to occur.  Other concerns limit which noble 

gases may be viable for OPAL systems.  First, Kr and Rn are both radioactive (as is the 

alkali Fr); since neither has a stable isotope, neither can be used reliably in such a system.  

Second is a matter of scientific interest:  since Ne appears enough like either He or Ar 

(depending on the model used), some research groups simply omit the use of Ne 

altogether, but we will continue to consider it.  Thus, we shrink from thirty-six potential 

combinations (Li, Na, K, Rb, Cs, or Fr with He, Ne, Ar, Kr, Xe, or Rn) to nine candidates 

(K, Rb, or Cs with He, Ne, or Ar). 

 The objective for this dissertation is to develop a model for line broadening in 

which the time evolution of the alkali vapor – noble gas system is handled through 

wavepacket propagation.  The quantum-mechanical time-evolution operator for the 

system is governed by the Hamiltonian, and we will use the Fourier transform 

(specifically, the Fast Fourier Transform, or FFT) and its inverse to transform the 

wavefunction of the system between the momentum and position representations, as 

appropriate, in order to operate with the momentum-dependent and position-dependent 

portions, respectively, of the time-evolution operator.  This method will be explained in 

detail in section 2.4.  The normal method of examining atomic collisions is to 

approximate the colliding system of two atoms as a diatomic molecular system.  This 

allows one to describe the system using appropriate Hund’s states (Allard & Kielkopf, 

1982; Bransden & Joachain, 2003; Drake, 2006; Zare, 1988).  It is through this 

approximation to molecular dynamics that we will utilize difference potentials in the 

context of this dissertation research. 

This research exhibits several new features which set it apart from the current 

state of the field.  First, the full ab initio potential energy surfaces are used; these 

potential energy surfaces have been calculated through many-body calculations by Blank 

(Blank, Weeks, and Kedziora, 2012).  Second, collisions are treated quantum-
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mechanically and nonadiabatically and include spin-orbit and Coriolis coupling.  Third, 

calculations are made with no approximations beyond those of the impact limit. 

 

1.3. Overview 

 This dissertation will begin with an overview of collisional line broadening from 

the perspective of the Anderson-Talman model and then the Baranger model.  Following 

the overview of these two models we will outline the research methodology used to 

calculate spectral line broadening and shift coefficients.  This portion of the dissertation 

will outline the overall research process and a detailed description of the simulation 

process.  The primary programming language used in writing computer simulations for 

this research is Fortran 90, with some Fortran 77 legacy code used where appropriate, 

compiled and executed on AFIT’s Linux Cluster and on supercomputers run by the DoD 

High Performance Computing Modernization Program.  Preparation of initial 

wavepackets and analysis of the output data are achieved using Matlab code.  Here, the 

dissertation will include discussion of the potential limitations in simulation methods and 

theory-experiment interface.  Finally, the dissertation will lay out research results and a 

discussion of the potential impact of those results. 
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II.  Theoretical Background 

This chapter presents the technical background for major concepts that will be utilized 

and developed in this dissertation research.  This chapter is not intended necessarily as a 

‘first principles’ development but rather to provide sufficient detail for the research to be 

carried out in a manner that can be repeated and verified.  This chapter provides a basic 

overview of the physics involved, from the quantum physics of spectral lines and 

collisional line broadening, to the wavepacket propagation algorithm used to generate 

scattering matrix elements, to the Anderson-Talman model and the Baranger model 

which are the standards for this field.  Section 2.6 gives an overview of how coupling 

processes could be handled, especially in the context of the Baranger model. 

 

2.1. Quantum Physics of Spectral Lines 

 An isolated atom, going through a transition between quantum states, radiates or 

absorbs at a single frequency corresponding to the difference in the energies of the two 

quantum states, given by 𝜔 = ∆𝐸 ℏ⁄ .  If we plot intensity as a function of frequency, we 

get a spectral line that looks like a Dirac delta function at ω, the frequency corresponding 

to the transition. 

 

Fig. 2.1a:  Dirac delta function 
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However, we find that isolated atoms do not exist in nature, and that transitions do 

not occur at a specific single frequency, so we should already expect that a given atomic 

transition might correspond to a distribution of frequencies.  This distribution of 

frequencies causes the shape of the spectral line to be broadened from the Dirac delta 

function. 

Three primary physical processes contribute to spectral line broadening.  First, the 

natural lifetime of excited atomic states creates what is called natural broadening.  

Second, the statistical distribution of velocities of atoms at a given temperature gives rise 

to Doppler broadening.  Third, collisions between atoms at a given pressure give rise to 

collisional broadening (or pressure broadening).  Since only collisional broadening 

depends on the particular mixture of atoms—that is, only this form changes the spectrum 

of one atom according to the particular type of other atom in a chamber with it—the 

background for this dissertation will concentrate on collisional broadening.  Specifically, 

this dissertation is concerned with the application of two particular models of collisional 

line broadening:  the semiclassical Anderson-Talman model (Anderson, 1949, 1952; 

Anderson & Talman, 1956; Allard & Kielkopf, 1982) and the quantum model of 

Baranger (Baranger, 1958a, 1958b, 1958c, 1962). 

 

2.2. Anderson-Talman Model 

 The Anderson-Talman model is a semiclassical model of collisional line 

broadening.  This model views atomic collisions as classical collisions in the reference 

frame of a single atom.  In other words, Anderson-Talman views the spectral features of a 

single atom as multiple atoms collide with it in a classical manner.  Since spectral lines 

arise through quantum mechanics, and the collisions are treated classically, this is a 

semiclassical model of line broadening.  Anderson and Talman claim that this 

semiclassical approach yields a fully functional model: 
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The theory to be developed here is exact when its basic assumptions about intermolecular 
forces are correct, except insofar as the actual numerical calculations may involve 
approximations.  These intermolecular force assumptions, while not entirely realistic, are 
nonetheless the same as those of most previous statistical or generalized theories.  Thus, 
while the present theory is of only limited importance as a calculation of actual 
experimental line shapes, it gives correctly, and we claim considerably clarifies, the 
relationship between statistical and impact theories.  (Anderson & Talman, 1956) 

 

The basic setup for this model is shown in Fig. 2.2a, below:  

 

 

Fig. 2.2a:  A classical collision 

 

In this classical collision, atom A is assumed to scatter off of atom B with impact 

parameter (distance of closest approach) b.  In the classical sense, atom A is considered 

to continue in straight-line motion at velocity v regardless of any interaction with atom B.  

The position of atom A at time t is: 

 𝑥(𝑡) = 𝑥0 + 𝑣𝑡, (2.1) 

 

where (𝑥 − 𝑥0) is the displacement of atom A.  The electric field radiated by atom B, in 

the dipole approximation, is 

 𝐸𝑧(𝑡) = 𝐶𝑝𝑧(𝑡) = 𝐶𝑞𝑧(𝑡). 

 

(2.2) 



www.manaraa.com

 

10 
 

Where C is a constant and 𝑝𝑧(𝑡) = 𝑞𝑧(𝑡) is the dipole moment of the radiator.  We can 

include a phase factor, 𝑒𝑖𝜑(𝑡), to obtain: 

 𝐸𝑧(𝑡) = 𝐶𝑞𝑧0𝑒𝑖𝜑(𝑡) = 𝐸0𝑒𝑥𝑝 {𝑖𝜑(𝑡)}. 

 

(2.3) 

The phase is the instantaneous phase 

 𝜑(𝑡) = ∫ 𝑑𝑡′𝜔(𝑡′)𝑡
0 = ∫ 𝑑𝑡′�𝜔0 + 𝑉𝑖𝑗(𝑡′)�𝑡

0 , 

 

(2.4) 

where 𝜔0 is the unperturbed frequency, and 𝑉𝑖𝑗(𝑡′) is the difference potential between 

atoms A and B.  (Note that the difference potential here has units of ω and is not the 

same as the potential.)  So the radiated electric field is given by 

 
𝐸𝑧(𝑡) = 𝐸0𝑒𝑥𝑝 �𝑖 � 𝑑𝑡′�𝜔0 + 𝑉𝑖𝑗(𝑡′)�

𝑡

0
� 

 

           = 𝐸0𝑒𝑥𝑝 �𝑖𝜔0𝑡 + 𝑖 ∫ 𝑑𝑡′𝑉𝑖𝑗(𝑡′)𝑡
0 �. 

 

(2.5) 

In general, we can split the last term of (2.5) into two pieces, representing elastic and 

inelastic collisions, respectively: 

 𝐸𝑧(𝑡) = 𝐸0𝑒𝑥𝑝 �𝑖𝜔0𝑡 + 𝑖𝜂(𝑡) − 𝛾𝑡
2
�. 

 

(2.6) 

We define η(t) as the phase shift that results from elastic collisions, and we define the 

last term to represent damping from inelastic collisions.  The first term represents the 

unperturbed oscillator.  This brings us to another assumption of Anderson-Talman, the 

adiabatic assumption—the “perturbation changes in time slowly enough that other states 

do not mix appreciably with the excited and ground states” (Anderson & Talman, 1956).  

According to Anderson and Talman, the adiabatic assumption, “while never exactly 

valid, is, when carefully handled, seldom the source of serious errors” (Anderson & 

Talman, 1956). 
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 Now we can calculate the line intensity as a function of frequency, which is given 

by: 

 𝐼(𝜔 − 𝜔0) = |𝑬(𝜔 − 𝜔0)|2 

 

 

                                          = 𝐸𝑧∗(𝜔 −𝜔0)𝐸𝑧(𝜔 − 𝜔0). 

 

(2.7) 

But our electric field is time-dependent, so we need to Fourier-transform the field from 

time-dependence to frequency-dependence in order to perform this intensity calculation.  

The Fourier transform gives us: 

 𝐸𝑧(𝜔 − 𝜔0) = ∫ 𝑑𝑡′∞
−∞ 𝐸𝑧(𝑡′)𝑒𝑖(𝜔−𝜔0)𝑡′. 

 

(2.8) 

With this Fourier-transformed field, we can calculate the line intensity: 

 
𝐼(𝜔 − 𝜔0) = � 𝑑𝑡

∞

−∞

𝐸𝑧∗(𝑡)𝑒−𝑖(𝜔−𝜔0)𝑡 � 𝑑𝑡′
∞

−∞

𝐸𝑧(𝑡′)𝑒𝑖(𝜔−𝜔0)𝑡′ 

 

 

           = ∫ 𝑑𝑡′∞
−∞ ∫ 𝑑𝑡∞

−∞ 𝐸𝑧∗(𝑡)𝐸𝑧(𝑡′)𝑒𝑖(𝜔−𝜔0)(𝑡′−𝑡). 

 

(2.9) 

We can make the substitutions 𝜏 = 𝑡′ − 𝑡, 𝑜𝑟  𝑡′ = 𝑡 + 𝜏, so  𝑑𝑡′ = 𝑑𝜏′ and (2.9) 

transforms into 

 𝐼(𝜔 −𝜔0) = ∫ 𝑑𝜏∞
−∞ �∫ 𝑑𝑡∞

−∞ 𝐸𝑧∗(𝑡)𝐸𝑧(𝑡 + 𝜏)�𝑒𝑖(𝜔−𝜔0)𝜏. 

 

(2.10) 

We define the expression in square brackets in this equation to be the correlation 

function, 𝛷(𝜏), and we define the squared field magnitude at t = 0 to be I0, so the 

intensity becomes 

 𝐼(𝜔 −𝜔0) = 𝐼0 ∫ 𝑑𝜏∞
−∞ 𝛷(𝜏)𝑒𝑖(𝜔−𝜔0)(𝜏). 

 

(2.11) 
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As a related aside, let us consider the ergodic hypothesis, introduced by 

Boltzmann in 1871.  According to the ergodic hypothesis, “the trajectory of a 

representative point passes, in the course of time, through each and every point of the 

relevant region of the phase space” (Pathria, 1996).  This means that the ensemble 

average of a physical quantity is equal to the time average of that physical quantity 

(Pathria, 1996).  Connecting back to our classical collision problem, since collisions are 

characterized by impact parameter (for a given type of collider), and the ergodic 

hypothesis represents an ensemble of collisions that fills the relevant space, the average 

over collisions can be replaced equivalently with an average over impact parameter and 

initial starting points 𝑥0. 

Now, the correlation function accounts for the total phase shift over the course of 

the radiation of the system: 

 

 𝛷(𝜏) = 𝑒𝑥𝑝{−𝑛𝑔(𝜏)}. 

 

(2.12) 

This takes a time average of all the perturbations affecting the radiation, where n is the 

number density of the perturbers.  Using the ergodic hypothesis, we can deduce that 𝑔(𝜏) 

is the average perturbation resulting from an impact: 

 

 𝑔(𝜏) = 2𝜋 ∫ 𝑏 𝑑𝑏∞
0 ∫ 𝑑𝑥0 �1 − 𝑒𝑥𝑝 �− 𝑖

ℏ ∫ 𝑑𝑡 𝑉𝑖𝑗 �{𝑏2 + (𝑥0 + 𝑣̅𝑡)2}1 2� �𝜏
0 ��∞

−∞ , 

 

(2.13) 

where, again, 𝑉𝑖𝑗 is the difference potential as a function of {𝑏2 + (𝑥0 + 𝑣̅𝑡)2}1 2� , and we 

integrate over an annulus of impact parameters and over positions, as indicated in Fig. 

2.2b, below. 
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Fig. 2.2b:  Integration over an annulus of impact parameters 

In a sense, the exponential in 𝑔(𝜏) looks like a quantum-mechanical time-evolution 

operator. 

 Two limits are usually considered in the literature (Allard & Kielkopf, 1982).  

The first limit is the impact approximation, which takes the limit of 𝑔(𝜏) in the case of 

low perturber density n.  This is equivalent to the limit of long times between collisions.  

The second limit is the static approximation, which takes the limit of 𝑔(𝜏) in the case of 

high perturber density. 

 The impact approximation also assumes a relatively short range for the potential, 

as indicated in Fig. 2.2c, below. 

 

 

Fig. 2.2c:  Impact approximation 
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We can recalculate (2.13) as 

 𝑔(𝜏) = 2𝜋 ∫ 𝑏 𝑑𝑏 ∫ 𝑑𝑥0 �1 − 𝑒𝑥𝑝 �− 𝑖
ℏ
𝜂𝑠��

∞
−∞

∞
0 , 

 

(2.14) 

where 

 𝜂𝑠 = ∫ 𝑑𝑡 𝑉𝑖𝑗 �{𝑏2 + (𝑥0 + 𝑣̅𝑡)2}1 2� �𝜏
0 , 

 

(2.15) 

and we assume that 𝑉𝑖𝑗 does not contribute to 𝜂𝑠 outside the sphere in Fig. 4 (that is, 

outside the range of the potential).  This 𝜂𝑠 integral essentially is an integral over 

trajectories of the perturber between 𝑥0 and  𝑥0 + 𝑣̅𝑡.   We see some sample trajectories 

in Fig. 2.2d. 

 

 

Fig. 2.2d:  Sample impact trajectories 

 

The 𝜂𝑠 integral gains no contribution for trajectories which have no overlap with the 

region of influence of the potential (the circle in Fig. 2.2d).  Now, 𝜂𝑠 is constant for all 

trajectories that straddle the potential, as shown in Fig. 2.2e. 
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Fig. 2.2e:  Trajectory overlap contributions 

 

Since 𝜂𝑠 is a constant where the trajectory straddles the potential, so is the quantity 

�1 − 𝑒𝑥𝑝 �− 𝑖
ℏ
𝜂𝑠��, which is illustrated in Fig. 2.2f. 

 

 

Fig. 2.2f:  Trajectory straddles potential 

 

Now, the quantity �1 − 𝑒𝑥𝑝 �− 𝑖
ℏ
𝜂𝑠�� appears in (2.14), and evaluates to 

 ∫ dx0 �1 − exp �− i
ℏ
ηs��

∞
−∞ = v�τ �1 − exp �− i

ℏ
ηs�� + C, 

 

(2.16) 
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where 𝑣̅𝜏 is the length of the trajectory, �1 − 𝑒𝑥𝑝 �− 𝑖
ℏ
𝜂𝑠�� = 𝜅𝑠(𝑏), their product is the 

shaded area in Fig. 2.2f, and C is the area of the wings.  We plug this “evaluated” integral 

back into (2.14) to find 

 𝑔(𝜏) = 2𝜋 ∫ 𝑏 𝑑𝑏 �𝑣̅𝜏 �1 − 𝑒𝑥𝑝 �− 𝑖
ℏ
𝜂𝑠�� + 𝐶�∞

0 . 

 

(2.17) 

This integral was “evaluated” (using the quotation marks) only because the integration of 

the wings has not really been done.  We will now assume that the area of the wings, 

integrated over all impact parameters, is negligible in comparison with the shaded area in 

Fig. 2.2f, so 

 𝑔(𝜏) ≈ 2𝜋𝑣̅𝜏 ∫ 𝑏 𝑑𝑏 �1 − 𝑒𝑥𝑝 �− 𝑖
ℏ
𝜂𝑠(𝑏)��∞

0 . 

 

(2.18) 

Now that we have an expression for 𝑔(𝜏), we can find the correlation function and, 

eventually, the line intensity.  We can rewrite (2.18) as 

 𝑔(𝜏) ≈ 𝑣̅𝜏𝜎, 

 

(2.19) 

where we define 

 
𝜎 = 2𝜋� 𝑏 𝑑𝑏 �1 − 𝑒𝑥𝑝 �−

𝑖
ℏ
𝜂𝑠(𝑏)��

∞

0

 

 

 

(2.20) 

and, since 𝜎 has both real and imaginary parts, 

 𝑔(𝜏) = [𝑣̅ 𝑅𝑒(𝜎) + 𝑖 𝑣̅ 𝐼𝑚(𝜎)]𝜏 (2.21) 

                         = (𝛼1 + 𝑖𝛽1)𝜏 + (𝛼0 + 𝑖𝛽0).            

 

(2.22) 

If we plot 𝑔(𝜏) versus 𝜏, the slope of the linear portion gives us 𝛼1 and 𝛽1.  Now, the 

correlation function is given by 



www.manaraa.com

 

17 
 

 𝛷(𝜏) = 𝑒𝑥𝑝{−𝑛𝑔(𝜏)} = 𝑒𝑥𝑝{(−𝑛𝛼1 − 𝑖𝑛𝛽1)𝜏}, 

 

(2.23) 

where 𝑛𝛼1 is the line width and 𝑛𝛽1 is the line shift, and the line intensity is given by 

 
𝐼(𝜔 − 𝜔0) = 𝐼0 � 𝑑𝜏

∞

−∞

𝛷(𝜏)𝑒𝑖(𝜔−𝜔0)(𝜏) 

                             ∝
𝐼0

(𝜔 − 𝜔0 − 𝑛𝛽1)2 + (𝑛𝛼1)2  . 

 

(2.24) 

 

(2.25) 

The second limit usually considered in the literature (Allard & Kielkopf, 1982) is 

the static approximation, which takes the limit of 𝑔(𝜏) in the case of small 𝑣̅𝑡; that is, the 

limit of high density.  Going back to our initial equation (2.13), we have 

 
𝑔(𝜏) = 2𝜋� 𝑏 𝑑𝑏

∞

0

� 𝑑𝑥0 �1 − 𝑒𝑥𝑝 �−
𝑖
ℏ
�𝑑𝑡 𝑉𝑖𝑗 �{𝑏2 + (𝑥0 + 𝑣̅𝑡)2}1 2� �
𝜏

0

��
∞

−∞

. 
 

(2.13) 

If we now take the static limit, we can drop the 𝑣̅𝑡 out of this equation.  We then make 

the substitution 

{𝑏2 + (𝑥0 + 𝑣̅𝑡)2}1 2� = 𝑅   ;     𝑉𝑖𝑗 �{𝑏2 + (𝑥0 + 𝑣̅𝑡)2}1 2� � =  𝑉𝑖𝑗(𝑅) 

Converting to polar coordinates, we transform our equation into the form 

 
𝑔(𝜏) = 4𝜋� 𝑅2 𝑑𝑅

∞

0

�1 − 𝑒𝑥𝑝 �−
𝑖
ℏ

 𝑉𝑖𝑗(𝑅)𝜏�� , 

 

 

(2.26) 

where the integrand gives the volume of the region of influence of the potential, modified 

by a periodic term.  As with the impact limit, the evaluated form of 𝑔(𝜏) depends on the 

functional form of the difference potential  𝑉𝑖𝑗(𝑅).  Once the 𝑔(𝜏) is evaluated for a 

given functional form of difference potential, the correlation function, line width, line 

shift, and line intensity can be calculated in the same manner as with the impact limit. 
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 Now we can begin to do some calculations with the Anderson-Talman model.  

For the purposes of illustration, we shall perform sample calculations with Rb + He, but 

the results of similar calculations for all nine alkali-noble gas pairs can be found later in 

this section.  For any pair, the expression for 𝑔(𝜏) in (2.13) is fairly straightforward to 

calculate for a 6-12 (Lennard-Jones) potential: 

 𝑉(𝑟) =
𝐶12
𝑟12

−
𝐶6
𝑟6

 (2.27a) 

or 

 
𝑉(𝑟) = 𝑑 �

𝜌12

𝑟12
−

2𝜌6

𝑟6
� (2.27b) 

 

The parameters for (2.27a) and (2.27b) are listed in Table 2.2a for Rb + He, below, where 

d and 𝜌 are calculated by 𝑑 = −𝐶62
4𝐶12
�  and 𝜌 = �2𝐶12

𝐶6� �
1 6⁄

, which can be inverted 

easily by 𝐶12 = 𝑑𝜌12 and 𝐶6 = 2𝑑𝜌6, with the conversion factors (for 𝐶6) 1 𝐽 ∙ 𝑚6 =

104.46 × 1077𝑎𝑢 and (for 𝐶12) 1 𝐽 ∙ 𝑚12 = 4.5769 × 10140𝑎𝑢 (au signifies atomic 

units).  The Lennard-Jones coefficients are calculated backward using theoretical 

potential surfaces: 
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Fig. 2.2g.  Rb + He potentials 

  
Fig. 2.2h.  Rb + He difference potentials 
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We start with values of d and 𝜌 from the surfaces and perform the inverse 

calculations as described above to find the starting data in Table 2.2a.  We confirm the 

values of d and 𝜌 by fitting a 6-12 potential curve (2.27b) to the local maximum in each 

of the difference potential curves.  We use the local maxima (or bumps) corresponding to 

the relevant features in the potential energy surfaces; for example, we can see clearly the 

shoulder or bump in the 𝐵2Σ1
2�
 surface (Fig. 2.2g) and its corresponding local maximum 

in difference potential (Fig. 2.2h).  Similarly, for the 𝐴2Π1
2�
 and 𝐴2Π3

2�
 surfaces we see 

dips in the potential surfaces (Fig. 2.2g) which correspond to local minima in their 

difference potentials (Fig. 2.2h).  We expect minima in difference potential to correspond 

to redshifting of a spectral line and maxima in difference potential to blueshifting of a 

spectral line.  We therefore generally expect the Anderson-Talman model to yield two 

redshifted lines (corresponding to the 𝐴2Π1
2�
 and 𝐴2Π3

2�
 surfaces) and one blueshifted 

line (corresponding to the 𝐵2Σ1
2�
 surface).  As we will see with the uncoupled case in the 

Baranger model, each excited state corresponds to one broadening coefficient and one 

shift coefficient. 

 Even from the outset, we do not expect this to be a perfect model.  First, we are 

approximating a difference potential surface by a 6-12 potential given by (2.27b), and a 

‘pure’ 6-12 potential curve does not fit any of the CsAr difference potential surfaces 

perfectly.  At best, we have assembled a 6-12 curve to mimic the position and height of 

the local maximum of the surface.  As we can see in Figs. 2.2i and 2.2j, below, the curve 

fits are acceptable at separations greater than those corresponding to the local maxima, 

but they diverge significantly for closer interactions.  These divergences are due to the 

influence of the local minima in the surfaces which do not appear in the ‘pure’ 6-12 

curves. 
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Fig. 2.2i.  6-12 curve fit to the 𝐴2Π1

2�
− 𝑋2Σ1

2�
 difference potential 

 
Fig. 2.2j.  6-12 curve fit to the 𝐴2Π3

2�
− 𝑋2Σ1

2�
 difference potential 
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Fig. 2.2k.  6-12 curve fit to the 𝐵2Σ1

2�
− 𝑋2Σ1

2�
 difference potential 

 

Table 2.2a:  Lennard-Jones parameters for Rubidium + Helium lines. 

Difference potential C6 C12 d 𝜌 

 
(10-77 J-

m6) 
(au) (10-134 J-m12) (106 au) (au) (cm-1) (Bohr) (Å) 

𝐴2Π1
2�
− 𝑋2Σ1

2�
 

(D1 line) 
0.330 34.49 0.0066 0.030 0.01005 2206 3.46 1.83 

𝐴2Π3
2�
− 𝑋2Σ1

2�
 

(D2a) 
0.355 37.12 0.0074 0.034 0.01027 2254 3.49 1.85 

𝐵2Σ1
2�
− 𝑋2Σ1

2�
 

(D2b) 
-7.474 -780.7 -7.1227 -32.6 -0.00468 -1027 6.61 3.50 
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We calculate the average velocity in (2.13) from the temperature: 

 
𝑣̅ = �

8𝑘𝐵𝑇
𝜋𝜇

 (2.27c) 

where 𝑘𝐵 is Boltzmann’s constant, 𝑇 the temperature, and 𝜇 the reduced mass of the 

colliding perturber-emitter system.  From here, one can integrate (2.13) numerically to 

find 𝑔(𝜏), then plug those results into (2.12) to get the correlation function 𝛷(𝜏), which 

depends on the number density of perturbers, n.  Finally, we use the numerical result for 

the correlation function to calculate the line shape by (2.11). 

Although this is the full-up Anderson-Talman calculation, we can make an impact 

approximation along the way.  In doing so, we can take the results of linear fits of the real 

and imaginary parts of 𝑔(𝜏), along with (2.24), to find numerical values for the line width  

𝑛𝛼1 and the line shift 𝑛𝛽1.  The results are listed in Table 2.2b, below, compared with 

experimental results at a temperature of 394 K, which can be adjusted for temperature by 

the formula 

 
𝑔(𝑇2) = 𝑔(𝑇1) �

𝑇1
𝑇2
�
𝑚

 (2.27d) 

where m = ½, assuming the cross-section is independent of speed (Pitz, Wertepny, and 

Perram, 2009; Pitz, Fox, and Perram, 2010). 

 The results we obtain for 𝛼 and 𝛽 are in atomic units, or (Bohr3 × atomic unit of 

frequency).  In order to compare these theoretical results with experiment, we must 

convert to SI units and divide by kT, since when we compare (2.23b) and (2.24) with the 

ideal gas law, we have 𝑛 = 𝑃
𝑘𝑇

 and we want to construct 𝛼 and 𝛽 in units of MHz/Torr 

(that is, with 𝑔(𝜏) in units of inverse-pressure).  We find that the unit conversion 

simplifies to (for T = 394 K; changes in temperature change both the prediction of 𝑔(𝜏) 

and the 𝑃
𝑘𝑇

 dependence in n): 

 
𝛼{𝑀𝐻𝑧 𝑡𝑜𝑟𝑟⁄ } = 𝛼{𝑎𝑡𝑜𝑚𝑖𝑐 𝑢𝑛𝑖𝑡𝑠} × 30.089

𝑀𝐻𝑧/𝑇𝑜𝑟𝑟
𝑎𝑡𝑜𝑚𝑖𝑐 𝑢𝑛𝑖𝑡

 (2.27e) 
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The conversion for 𝛽 is exactly the same.  The resulting Anderson-Talman theoretical 

results are given in Table 2.2b.   

 

Table 2.2b:  Line broadening and shift parameters for Rb + He lines (T = 394 K) 

Transition 𝛼 (FWHM, MHz/Torr) 𝛽 (∆𝜔, MHz/Torr) 

 Theory experiment theory experiment 

𝐴2Π1
2�
− 𝑋2Σ1

2�
 

(D1 line) 
6.27 18.9 ± 0.2 4.44 4.71 ± 0.04 

𝐴2Π3
2�
− 𝑋2Σ1

2�
 

(D2a) 
6.32 

14.04 

(avg) 
20.0 ± 0.14 

4.77 
-5.57 

(avg) 
0.37 ± 0.06 

𝐵2Σ1
2�
− 𝑋2Σ1

2�
 

(D2b) 
21.75 -15.91 

 

Because the 6-12 Lennard-Jones difference potentials are used and not the 

physical potential energy surfaces, these calculations are not intended to be predictive but 

instead are presented only as checks for later calculations using the Baranger model.  

Tables 2.2c and 2.2d show Lennard-Jones parameters and broadening and shift 

coefficients for all nine M + Ng pairs. 

 One major issue that arises with the Anderson-Talman model is that there is no 

accounting for coupling between the excited states.  Because the model calculates one 𝛼 

and one 𝛽 for each potential surface, it does so for each of the three excited states, rather 

than the two measured lines (D1 and D2).  Another issue is that the theoretical 

calculations using the Anderson-Talman model yield results which diverge significantly 

from the corresponding measurements. 
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Table 2.2c:  Lennard-Jones parameters for all nine M + Ng pairs. 

 
𝐴2Π1

2�
− 𝑋2Σ1

2�
 (D1) 𝐴2Π3

2�
− 𝑋2Σ1

2�
 (D2a) 𝐵2Σ1

2�
− 𝑋2Σ1

2�
 (D2b) 

d (au) 𝜌 (Bohr) d (au) 𝜌 (Bohr) d (au) 𝜌 (Bohr) 

K + He 0.01208 3.09 0.01218 3.08 -0.00618 5.89 

K + Ne 0.0078 2.70 0.0080 2.70 -0.00386 6.24 

K + Ar 0.00791 4.21 0.00805 4.19 -0.00423 7.09 

Rb + He 0.01005 3.46 0.01027 3.49 -0.00468 6.61 

Rb + Ne 0.00690 2.8 0.00730 2.8 -0.00303 6.89 

Rb + Ar 0.00702 4.48 0.00739 4.43 -0.00333 7.74 

Cs + He 0.00707 3.93 0.00756 3.99 -0.00259 7.87 

Cs + Ne 0.00430 4.0 0.00494 3.96 -0.00178 7.92 

Cs + Ar 0.00488 5.03 0.00556 5.01 -0.00192 8.85 

 

Table 2.2d:  Broadening and shift coefficients (in MHz/torr) for all nine M + Ng pairs, 
using Lennard-Jones (6-12) potentials in Anderson-Talman. 

 
𝐴2Π1

2�
− 𝑋2Σ1

2�
 (D1) 𝐴2Π3

2�
− 𝑋2Σ1

2�
 (D2a) 𝐵2Σ1

2�
− 𝑋2Σ1

2�
 (D2b) 

𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 

K + He 4.79 3.54 4.83 3.49 17.50 -12.56 

K + Ne 2.01 1.47 2.02 1.47 11.20 -8.25 

K + Ar 5.25 3.78 5.18 3.77 14.13 -10.12 

Rb + He 6.27 4.44 6.32 4.77 21.75 -15.91 

Rb + Ne 2.10 1.53 2.15 1.53 13.03 -9.48 

Rb + Ar 5.51 4.11 5.56 4.03 15.47 -11.21 

Cs + He 6.92 5.06 7.40 5.38 23.68 -17.13 

Cs + Ne 3.76 2.71 3.87 2.81 13.56 -9.80 

Cs + Ar 5.73 4.17 6.01 4.43 15.44 -11.01 
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Instead of using approximations, or even curve fits, to Lennard-Jones potentials as 

above, one could use the actual potential energy surfaces for each M + Ng pair and run 

the Anderson-Talman model rigorously under the resulting difference potentials.  Blank 

has performed the many-body calculations to develop physical potential energy surfaces 

(Blank, Weeks, and Kedziora, 2012) and used those in the Anderson-Talman model.  The 

results are shown for three different temperatures in Tables 2.2e-g (Blank, in 

preparation).  We will compare these results with Baranger model calculations in Chapter 

III. 

 

Table 2.2e:  Broadening and shift coefficients (in MHz/torr) for all nine M + Ng pairs, 
using the ab initio potentials in Anderson-Talman, at T = 250K. 

T = 250K 
𝐴2Π1

2�
− 𝑋2Σ1

2�
 (D1) 𝐴2Π3

2�
− 𝑋2Σ1

2�
 (D2a) 𝐵2Σ1

2�
− 𝑋2Σ1

2�
 (D2b) 

𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 

K + He 20.36 6.23 17.08 -2.44 31.89 4.11 

K + Ne 14.39 3.35 8.97 -1.12 16.98 1.73 

K + Ar 13.14 0.43 8.56 -1.36 14.49 -2.01 

Rb + He 30.47 6.79 17.49 -2.35 34.59 5.17 

Rb + Ne 15.21 1.76 8.50 -0.88 16.97 1.77 

Rb + Ar 11.86 -0.58 7.53 -0.91 13.51 -1.37 

Cs + He 32.26 4.70 18.76 -2.16 36.77 5.16 

Cs + Ne 14.82 1.70 8.94 -0.68 17.83 1.81 

Cs + Ar 12.00 -1.06 7.58 -0.49 13.98 -1.86 
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Table 2.2f:  Broadening and shift coefficients (in MHz/torr) for all nine M + Ng pairs, 
using the ab initio potentials in Anderson-Talman, at T = 350K. 

T = 350K 
𝐴2Π1

2�
− 𝑋2Σ1

2�
 (D1) 𝐴2Π3

2�
− 𝑋2Σ1

2�
 (D2a) 𝐵2Σ1

2�
− 𝑋2Σ1

2�
 (D2b) 

𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 

K + He 15.53 4.72 14.00 -2.05 26.14 3.47 

K + Ne 10.99 2.87 7.38 -0.94 13.97 1.51 

K + Ar 10.24 0.73 7.06 -1.09 11.89 -1.28 

Rb + He 23.70 6.09 14.36 -1.98 28.25 4.33 

Rb + Ne 12.80 1.65 7.01 -0.76 13.95 1.55 

Rb + Ar 10.01 -0.30 6.24 -0.74 11.11 -0.83 

Cs + He 26.70 4.48 15.44 -1.85 30.12 4.32 

Cs + Ne 12.24 1.38 7.39 -0.62 14.66 1.58 

Cs + Ar 9.80 -0.61 6.30 -0.44 11.48 -1.20 

 

 

Table 2.2g:  Broadening and shift coefficients (in MHz/torr) for all nine M + Ng pairs, 
using the ab initio potentials in Anderson-Talman, at T = 450K. 

T = 450K 
𝐴2Π1

2�
− 𝑋2Σ1

2�
 (D1) 𝐴2Π3

2�
− 𝑋2Σ1

2�
 (D2a) 𝐵2Σ1

2�
− 𝑋2Σ1

2�
 (D2b) 

𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 𝛼 (FWHM) 𝛽 (∆𝜔) 

K + He 12.76 3.78 12.06 -1.79 22.53 3.05 

K + Ne 8.94 2.49 6.38 -0.83 12.07 1.36 

K + Ar 8.44 0.81 6.19 -0.93 10.27 -0.89 

Rb + He 19.41 5.47 12.38 -1.74 24.28 3.78 

Rb + Ne 11.15 1.62 6.07 -0.68 12.04 1.39 

Rb + Ar 8.87 -0.11 5.42 -0.64 9.61 -0.55 

Cs + He 22.86 4.34 13.34 -1.65 25.93 3.78 

Cs + Ne 10.71 1.20 6.40 -0.57 12.67 1.42 

Cs + Ar 8.44 -0.40 5.48 -0.40 9.92 -0.84 
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2.3. Baranger Model 

While the Anderson-Talman model is a semiclassical model of collisional line 

broadening, the Baranger model treats the collisional dynamics quantum-mechanically.  

Both models treat radiation classically, and both models view atomic collisions in the 

reference frame of emitter/absorber atom.  However, Baranger begins with the impact 

approximation—the limit of low density or the limit in which the time between collisions 

is much longer than the duration of a given collision—and this approximation pervades 

the entire work of Baranger (Baranger, 1958a, 1958b, 1958c). 

In his model, Baranger considers a fixed radiating atom with initial state |𝑖 > , 

final state |𝑓 >, surrounded by moving perturbers (Baranger, 1958a; Allard & Kielkopf, 

1982).  The total power emitted by dipole transitions between these two states is given by 

 𝑃(𝜔) =
4𝜔4

3𝑐3
𝐼(𝜔) (2.28) 

 

This is consistent with the nonrelativistic limit of classical dipole radiation (Jackson, 

1999).  The intensity is given by (Allard & Kielkopf, 1982): 

 

 𝐼(𝜔) = �𝛿�𝜔 − 𝜔𝑖𝑓�|⟨𝑓|𝒅|𝑖⟩|2𝜌𝑖
𝑖𝑓

 (2.29) 

 

where 𝜔𝑖𝑓 is the frequency corresponding to the unperturbed atomic transition between 

initial and final states (here, the standard practice is to use units in which ℏ = 1), 𝜌𝑖 is the 

weighted statistical intrinsic probability for the initial state |𝑖 >, 𝒅 is the dipole moment 

of the radiator (not the entire system) assuming a pure dipole radiator (which is a 

reasonable assumption for a single transition), and the sum is over all possible initial and 

final states. 
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 Because it is easier to compute directly the Fourier transform of the line shape 

(Baranger, 1958a), we define a correlation function 

 Φ(𝜏) = � 𝐼(𝜔)𝑒−𝑖𝜔𝜏𝑑𝜔
∞

−∞

 (2.30) 

and the Fourier transform of the correlation function, 

 𝐼(𝜔) =
1

2𝜋
� Φ(𝜏)𝑒𝑖𝜔𝜏𝑑𝜏
∞

−∞

 (2.31) 

Since the radiation intensity is real, we restrict computations of the correlation function to 

positive values of 𝜏 and use the condition 

 Φ(−𝜏) = Φ∗(𝜏) (2.32) 

to compute correlation functions for negative values of s (Baranger, 1958a; Allard & 

Kielkopf, 1982).  Using this condition (2.32), the intensity (2.31) becomes 

 𝐼(𝜔) =
1

2𝜋
�Φ(𝜏)𝑒𝑖𝜔𝜏𝑑𝜏
0

−∞

+
1

2𝜋
� Φ(𝜏)𝑒𝑖𝜔𝜏𝑑𝜏
∞

0

 (2.33a) 

or 

 

𝐼(𝜔) =
1

2𝜋
� Φ(−𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏
∞

0

+
1

2𝜋
� Φ(𝜏)𝑒𝑖𝜔𝜏𝑑𝜏
∞

0

 

        =
1

2𝜋
� Φ∗(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏
∞

0

+
1

2𝜋
� Φ(𝜏)𝑒𝑖𝜔𝜏𝑑𝜏
∞

0

 

=
1

2𝜋
���Φ(𝜏)𝑒𝑖𝜔𝜏� + �Φ(𝜏)𝑒𝑖𝜔𝜏�

∗
�𝑑𝜏

∞

0

 

(2.33b) 

or 

 𝐼(𝜔) =
1
𝜋
𝑅𝑒 �� Φ(𝜏)𝑒𝑖𝜔𝜏𝑑𝜏

∞

0

� (2.33c) 

Combining (2.29) with (2.30), we get 
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 Φ(𝜏) = � ��𝛿�𝜔 − 𝜔𝑖𝑓�|⟨𝑓|𝒅|𝑖⟩|2𝜌𝑖
𝑖𝑓

� 𝑒−𝑖𝜔𝜏𝑑𝜔
∞

−∞

 (2.34) 

Now, one of the basic properties of the Dirac delta-function tells us that 

 � 𝛿�𝜔 − 𝜔𝑖𝑓�𝑓(𝜔)𝑑𝜔
∞

−∞

= 𝑓�𝜔𝑖𝑓� (2.35) 

So the integral in (2.34) evaluates simply as 

 Φ(𝜏) = �𝑒−𝑖𝜔𝑖𝑓𝜏|⟨𝑓|𝒅|𝑖⟩|2𝜌𝑖
𝑖𝑓

 (2.36) 

In the case of multiple perturbers, the net correlation function is the product of the single-

perturber correlation functions (Baranger, 1958a; Allard & Kielkopf, 1982) because we 

have assumed separability.  In the case of N identical perturbers, 

 Φ(𝜏) = [𝜑(𝜏)]𝑁 (2.37) 

where 𝜑(𝜏) is the single-perturber correlation function (that is, in (2.36) the expression is 

actually 𝜑(𝜏), and if there is only one perturber then (2.36) gives Φ(𝜏)) which Baranger 

estimates, from the impact approximation that most of the time the perturber does not 

influence the emitter/absorber atom (Baranger, 1958a) because the time between 

collisions is much longer than the duration of the collision.  Baranger introduces a small 

correction to account for the time during which the perturber is close to the 

emitter/absorber atom: 

 𝜑(𝜏) = 1 − 𝒱−1𝑔(𝜏) (2.38) 

where 𝒱 is the volume of the container and 𝑔(𝜏) is some function that has not yet been 

defined (but begins to resemble the 𝑔(𝜏) of Anderson-Talman; see section 2.2).  If we 

have N perturbers in our container, then the perturber number density is 

 𝑛 = 𝑁𝒱−1 (2.39) 

and the correlation function is given by (2.37) and (2.38): 

 Φ(𝜏) = [1 −𝒱−1𝑔(𝜏)]𝑁 (2.40) 
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Now, assuming the correction is small in (2.38), then we can replace (2.38) with the 

Taylor-series expansion for the exponential, 

 𝑒𝛾 = 1 + 𝛾 +
𝛾2

2
+
𝛾3

3
+ ⋯ ≈ 1 + 𝛾 (2.41) 

So (2.38) becomes 

 𝜑(𝜏) = 𝑒𝑥𝑝[−𝒱−1𝑔(𝜏)] (2.42) 

and the full correlation function (2.40) becomes 

 Φ(𝜏) = 𝑒𝑥𝑝[−𝑁𝒱−1𝑔(𝜏)] = 𝑒𝑥𝑝[−𝑛𝑔(𝜏)] (2.43) 

which begins to look like (2.12) in Anderson-Talman.  Once we have Φ(𝜏) we can 

calculate the line shape 𝐼(𝜔), but we need to find 𝑔(𝜏) in order to find Φ(𝜏). 

 We start from the single-perturber form of (2.36), 

 𝜑(𝜏) = �𝑒−𝑖𝜔𝑖𝑓𝜏|⟨𝑓|𝒅|𝑖⟩|2𝜌𝑖
𝑖𝑓

 (2.36’) 

In atomic units, 𝜔𝑖𝑓 = 𝐸𝑖 − 𝐸𝑓 and 

 

𝜑(𝜏) = �𝑒−𝑖�𝐸𝑖−𝐸𝑓�𝜏{⟨𝑓|𝒅|𝑖⟩}†{⟨𝑓|𝒅|𝑖⟩}𝜌𝑖
𝑖𝑓

 

   = �𝑒−𝑖�𝐸𝑖−𝐸𝑓�𝜏⟨𝑖|𝒅|𝑓⟩⟨𝑓|𝒅|𝑖⟩𝜌𝑖
𝑖𝑓

 

  = �⟨𝑖|𝒅|𝑓⟩�𝑓�𝑒𝑖𝐸𝑓𝜏𝒅𝑒−𝑖𝐸𝑖𝜏�𝑖�𝜌𝑖
𝑖𝑓

 

 

 

 

 

(2.44) 

Here, Baranger uses the Hamiltonian of the perturber when the atom is in its initial and 

final state.  Thus, (2.44) becomes 

 𝜑(𝜏) = �⟨𝑖|𝒅|𝑓⟩�𝑓�𝑒𝑖𝐻𝜏𝒅𝑒−𝑖𝐻𝜏�𝑖�𝜌𝑖
𝑖𝑓

 (2.45) 

By completeness, 
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 �|𝑓⟩⟨𝑓|
𝑓

= 1 (2.46) 

so 

 𝜑(𝜏) = ��𝑖�𝒅𝑒𝑖𝐻𝜏𝒅𝑒−𝑖𝐻𝜏�𝑖�𝜌𝑖
𝑖

 (2.47) 

Here, we see the time evolution operator (Allard & Kielkopf, 1982): 

 𝑇(𝜏) = 𝑒−𝑖𝐻𝜏 (2.48) 

where the Hamiltonian includes contributions from the atom, perturbers, and their 

interaction potential, respectively: 

 𝐻 = 𝐻𝐴 + 𝐻𝑃 + 𝑉 (2.49) 

and (2.47) becomes 

 𝜑(𝜏) = ��𝑖�𝒅𝑇†(𝜏)𝒅𝑇(𝜏)�𝑖�𝜌𝑖
𝑖

 (2.50) 

This sum over initial states is simply the trace of the matrix product: 

 𝜑(𝜏) = 𝑇𝑟[𝒅𝑇†(𝜏)𝒅𝑇(𝜏)𝜌] (2.51) 

where 𝜌 is the Boltzmann-Gibbs density matrix for the system (Allard & Kielkopf, 1982). 

We can assume that the system is separable into an atom (emitter) system and a 

perturber system.  This separability allows us to write the density matrix of the system as 

a product of the density matrices of the atom and perturbers: 

 𝜌 = 𝜌𝐴𝜌𝑃 (2.52) 

The time-evolution operator can be expressed similarly: 

 𝑇(𝜏) = 𝑇𝐴(𝜏)𝑇𝑃(𝜏) (2.53) 

where 𝑇𝐴(𝜏) incorporates the atom and interaction potential terms of the Hamiltonian and 

𝑇𝑃(𝜏) incorporates the perturber term of the Hamiltonian.  Further, the wavefunction can 

be expressed as a product of atom and perturber wavefunctions: 

 |𝜓(𝑡)⟩ = |𝜙(𝑡)⟩|𝜒(𝑡)⟩ (2.54) 
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The atom density matrix is given by: 

 𝜌𝐴 ≃
1

𝑍(𝑇)𝑔𝑖𝑒
−(𝐻𝐴+𝑉�) 𝑘𝑇⁄  (2.55) 

where 𝑔𝑖 is the degeneracy in the initial state, 𝑉�  is the statistical average of the 

perturbation potential (Allard & Kielkopf, 1982) and 𝑍(𝑇) is the partition function of the 

atomic system (Pathria, 1996; Cooper, 1967): 

 𝑍(𝑇) = �𝑔𝑖𝑒−(𝐻𝐴+𝑉�) 𝑘𝑇⁄

𝑖

= 𝑇𝑟�𝑔𝑒−(𝐻𝐴+𝑉�) 𝑘𝑇⁄ � (2.56) 

so 

 𝜌𝐴 ≃
𝑔𝑖𝑒−(𝐻𝐴+𝑉�) 𝑘𝑇⁄

∑ 𝑔𝑖𝑒−(𝐻𝐴+𝑉�) 𝑘𝑇⁄
𝑖

=
𝑔𝑖𝑒−(𝐻𝐴+𝑉�) 𝑘𝑇⁄

𝑇𝑟�𝑔𝑒−(𝐻𝐴+𝑉�) 𝑘𝑇⁄ �
 (2.57) 

From (2.51), 

 𝜑(𝜏) = 𝑇𝑟[𝒅𝑇†(𝜏)𝒅𝑇(𝜏)𝜌] (2.51) 

 

We can now break this out using (2.52) and (2.53) to get 

 
𝜑(𝜏) = 𝑇𝑟�𝒅𝑇𝑃†(𝜏)𝑇𝐴†(𝜏)𝒅𝑇𝐴(𝜏)𝑇𝑃(𝜏)𝜌𝐴𝜌𝑃� 

                 = ��𝑖�𝒅𝑇𝑃†(𝜏)𝑇𝐴†(𝜏)𝒅𝑇𝐴(𝜏)𝑇𝑃(𝜏)𝜌𝐴𝜌𝑃�𝑖�
𝑖

 
 

(2.58) 

From (2.46), 

 

𝜑(𝜏)     = ��𝑖�𝒅|𝑓⟩⟨𝑓|𝑇𝑃
†(𝜏)𝑇𝐴†(𝜏)𝒅𝑇𝐴(𝜏)𝑇𝑃(𝜏)𝜌𝐴𝜌𝑃�𝑖�

𝑖𝑓

 

                      = �⟨𝑖|𝒅|𝑓⟩�𝑓�𝑒+𝑖(𝐻𝐴+𝐻𝑃+𝑉�)𝜏𝒅𝑒−𝑖(𝐻𝐴+𝐻𝑃+𝑉�)𝜏�𝑖�𝜌𝐴𝜌𝑃
𝑖𝑓

 

= �⟨𝑖|𝒅|𝑓⟩�𝑓�𝑒+𝑖𝐻𝑃𝜏𝒅(𝜏)𝑒−𝑖𝐻𝑃𝜏�𝑖�𝜌𝐴𝜌𝑃
𝑖𝑓

 

 

 

 

(2.59) 

 

where in the interaction picture 𝒅(𝜏) = 𝑒+𝑖(𝐻𝐴+𝑉�)𝜏𝒅𝑒−𝑖(𝐻𝐴+𝑉�)𝜏. 
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For now, we will simply define the time-dependent dipole matrix element as 

𝒅(𝜏); we will revisit it shortly.  Using (2.36’), (2.44), (2.47) and (2.59), we have 

 𝜑(𝜏) = �𝑒−𝑖𝜔𝑖𝑓𝜏⟨𝑖|𝒅(𝜏)|𝑓⟩⟨𝑖|𝒅|𝑓⟩𝜌𝐴𝜌𝑃
𝑖𝑓

 (2.60) 

which, with (2.55), becomes 

 𝜑(𝜏) = ��
1

𝑍(𝑇)𝑔𝑖𝑒
−(𝐻𝐴+𝑉�) 𝑘𝑇⁄ ⟨𝑖|𝒅(𝜏)|𝑓⟩⟨𝑖|𝒅|𝑓⟩�

𝐴𝑣𝑖𝑓

 (2.61) 

where the Av subscript refers to the average over the ensemble of perturber states (Allard 

& Kielkopf, 1982). 

 Now, we revisit the time-dependent dipole matrix element 𝒅(𝜏) (Allard & 

Kielkopf, 1982): 

 𝒅(𝜏) = 𝑇†(𝑡 + 𝜏, 𝑡)𝒅𝑇(𝑡 + 𝜏, 𝑡) (2.62) 

where we essentially break up the time-evolution operator in (2.62), 𝑇(𝑡 + 𝜏, 𝑡), into the 

contribution from the unperturbed atom, 𝑇𝐴(𝜏), and a time-evolution operator resulting 

from the interaction potential in the interaction picture: 

 𝑇(𝑡 + 𝜏, 𝑡) = 𝑇𝐴(𝜏)𝑈(𝑡 + 𝜏, 𝑡) (2.63) 

According to the interaction picture, 𝑈(𝑡 + 𝜏, 𝑡) becomes (Cohen-Tannoudji, et 

al, 2005), again using atomic units: 

 𝑈(𝑡 + 𝜏, 𝑡) = 1 +
1
𝑖
� 𝑑𝑡1𝑉�𝑇(𝑡1)
𝑡+𝜏

𝑡
+

1
𝑖2
� 𝑑𝑡1𝑉�𝑇(𝑡1)
𝑡+𝜏

𝑡
� 𝑑𝑡2𝑉�𝑇(𝑡2)
𝑡1

𝑡
+ ⋯ (2.64) 

where 𝑉�𝑇(𝑡1) is the unitary-transformed 𝑉𝑇, ignoring the perturbation (Allard & Kielkopf, 

1982; Cohen-Tannoudji, et al, 2005; Cooper, 1967): 

 
𝑉�𝑇(𝑡1) = 𝑇𝐴†(𝑡1)𝑉𝑇(𝑡1)𝑇𝐴(𝑡1) 

            = 𝑒𝑖𝐻𝐴𝑡1𝑉𝑇(𝑡1)𝑒−𝑖𝐻𝐴𝑡1 

 

(2.65) 

Now, because of the order of integration in (2.64), we require that 

 𝜏 > 𝑡1 > 𝑡2 > ⋯ > 𝑡𝑛 (2.66) 
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That is, the duration of the interaction is short relative to the time between interactions; 

thus we have the impact approximation.  The order of integration is embodied by the use 

of a time-ordering (or sequencing) operator, 𝒯, which takes into account the ordering of 

the 𝑡𝑖 in the integrals in (2.64) since the 𝑉�𝑇(𝑡𝑖) do not commute in general (Baranger, 

1958b; Allard & Kielkopf, 1982).  This being the case, we can reverse the power-series 

expansion of 𝑈(𝑡 + 𝜏, 𝑡) in (2.64) to get 

 𝑈(𝑡 + 𝜏, 𝑡) = 𝒯exp �
1
𝑖
� 𝑉�𝑇(𝑡)𝑑𝑡
𝑡+𝜏

𝑡
� (2.67) 

Then, the average over perturber states in (2.61) moves inward and really only affects the 

time-dependent dipole matrix element 𝒅(𝜏): 

 𝜑(𝜏) = �
1

𝑍(𝑇)𝑔𝑖𝑒
−(𝐻𝐴+𝑉�) 𝑘𝑇⁄ ⟨𝑖|𝒅|𝑓⟩⟨𝑖|[𝒅(𝜏)]𝐴𝑣|𝑓⟩

𝑖𝑓

 (2.68) 

where 

 

[𝒅(𝜏)]𝐴𝑣 = [𝑇†(𝑡 + 𝜏, 𝑡)𝒅𝑇(𝑡 + 𝜏, 𝑡)]𝐴𝑣 

                                           = �𝑈−1(𝑡 + 𝜏, 𝑡)𝑇𝐴†(𝜏)𝒅𝑇𝐴(𝜏)𝑈(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

 

                                           = �𝑈−1(𝑡 + 𝜏, 𝑡)𝑒𝑖𝐻𝐴𝜏𝒅𝑒−𝑖𝐻𝐴𝜏𝑈(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

 

 

 

(2.69) 

Now, the time-evolution operator 𝑈(𝑡 + 𝜏, 𝑡) is a matrix operator, so we can express the 

product (2.69) in terms of the components of the matrix product (Allard & Kielkopf, 

1982): 

 ⟨𝑓|[𝒅(𝜏)]𝐴𝑣|𝑖⟩ = ��𝑈𝑓𝑝−1(𝑡 + 𝜏, 𝑡)𝑒𝑖𝜔𝑝𝜏⟨𝑝|𝒅|𝑞⟩𝑒−𝑖𝜔𝑞𝜏𝑈𝑞𝑖(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

𝑝𝑞

 (2.70) 

Or 

 ⟨𝑓|[𝒅(𝜏)]𝐴𝑣|𝑖⟩ = ��𝑈𝑓𝑝−1(𝑡 + 𝜏, 𝑡)⟨𝑝|𝒅|𝑞⟩𝑒−𝑖𝜔𝑞𝑝𝜏𝑈𝑞𝑖(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

𝑝𝑞

 (2.71) 

Finally, if the initial and final states are angular momentum states of an atom, |𝑗𝑚⟩, and 

𝑈𝑓𝑝−1(𝑡 + 𝜏, 𝑡) = ⟨𝑓|𝑈−1|𝑝⟩ then we must express the time- dependent dipole matrix 

element 𝒅(𝜏) as: 



www.manaraa.com

 

36 
 

 

�𝑗𝑓𝑚𝑓�[𝒅(𝜏)]𝐴𝑣�𝑗𝑖𝑚𝑖�

= � �𝑒−𝑖𝜔𝑖𝑓𝜏�𝑗𝑓𝑚𝑓�𝑈−1�𝑗𝑓𝑚1��𝑗𝑓𝑚1�𝒅�𝑗𝑖𝑚2�⟨𝑗𝑖𝑚2|𝑈|𝑗𝑖𝑚𝑖⟩�𝐴𝑣
𝑚1𝑚2

 (2.72) 

To evaluate the matrix element �𝑗𝑓𝑚1�𝒅�𝑗𝑖𝑚2�, we use the Wigner-Eckart 

theorem (Sakurai, 1994):  the matrix elements of tensor operators (of rank k) with respect 

to angular-momentum eigenstates satisfy 

 �𝛼′, 𝑗′𝑚′�𝑇𝑞
(𝑘)�𝛼, 𝑗𝑚� = ⟨𝑗𝑘;𝑚𝑞|𝑗𝑘; 𝑗′𝑚′⟩

⟨𝛼′𝑗′�𝑇(𝑘)�𝛼𝑗⟩

�2𝑗 + 1
 (2.73) 

⟨𝛼′𝑗′�𝑇(𝑘)�𝛼𝑗⟩ is the reduced matrix element (or double-bar matrix element) and is 

independent of m, m’, and q.  Now, the Clebsch-Gordan coefficients ⟨𝑗𝑘;𝑚𝑞|𝑗𝑘; 𝑗′𝑚′⟩ in 

(2.73) can be expressed in terms of the Wigner 3-j symbol (Sakurai, 1994): 

 ⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗𝑚⟩ = (−1)𝑗1−𝑗2+𝑚�2𝑗 + 1 � 𝑗1 𝑗2 𝑗
𝑚1 𝑚2 −𝑚� (2.74) 

It is worth noting here that the ket on the left side of (2.74), |𝑗1𝑗2; 𝑗𝑚⟩, is a simultaneous 

eigenket of 𝑱12, 𝑱22, 𝑱2, 𝐽𝑧 (Sakural, 1994); in atomic units: 

 

𝑱12|𝑗1𝑗2; 𝑗𝑚⟩ = 𝑗1(𝑗1 + 1)|𝑗1𝑗2; 𝑗𝑚⟩ 

𝑱22|𝑗1𝑗2; 𝑗𝑚⟩ = 𝑗2(𝑗2 + 1)|𝑗1𝑗2; 𝑗𝑚⟩ 

𝑱2|𝑗1𝑗2; 𝑗𝑚⟩ = 𝑗(𝑗 + 1)|𝑗1𝑗2; 𝑗𝑚⟩ 

𝐽𝑧|𝑗1𝑗2; 𝑗𝑚⟩ = 𝑚|𝑗1𝑗2; 𝑗𝑚⟩ 

(2.75a) 

(2.75b) 

(2.75c) 

(2.75d) 

The Clebsch-Gordan coefficients exhibit orthogonality relations (Sakurai, 1994): 

 

�⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗𝑚⟩⟨𝑗1𝑗2;𝑚′
1𝑚′

2|𝑗1𝑗2; 𝑗𝑚⟩
𝑗𝑚

= 𝛿𝑚1𝑚′
1𝛿𝑚2𝑚′

2 

� ⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗𝑚⟩⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗′𝑚′⟩
𝑚1𝑚2

= 𝛿𝑗𝑗′𝛿𝑚𝑚′ 

(2.76a) 

 

(2.76b) 

 

Incidentally, these orthogonality relations, combined with the definition of the Wigner 3-j 

symbol in (2.74), give us the 3-j symbol orthogonality relations: 
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�(2𝑗 + 1) � 𝑗1 𝑗2 𝑗
𝑚1 𝑚2 −𝑚��

𝑗1 𝑗2 𝑗
𝑚′

1 𝑚′
2 −𝑚�

𝑗𝑚

= 𝛿𝑚1𝑚′
1𝛿𝑚2𝑚′

2 

(2𝑗 + 1) � � 𝑗1 𝑗2 𝑗
𝑚1 𝑚2 −𝑚��

𝑗1 𝑗2 𝑗′
𝑚1 𝑚2 −𝑚′�

𝑚1𝑚2

= 𝛿𝑗𝑗′𝛿𝑚𝑚′ 

(2.76c) 

 

(2.76d) 

Going back to the matrix element �𝑗𝑓𝑚1�𝒅�𝑗𝑖𝑚2�, d is a vector (that is, a tensor of 

rank 1) so the Wigner-Eckart theorem (2.73) gives us 

 �𝑗𝑓𝑚𝑓�𝒅�𝑗𝑖𝑚𝑖� = �𝑗𝑖1;𝑚𝑖0�𝑗𝑖1; 𝑗𝑓𝑚𝑓�
�𝑗𝑓‖𝑑‖𝑗𝑖⟩

�2𝑗𝑖 + 1
 (2.77) 

Now, the Clebsch-Gordan coefficients have the symmetry property (Bransden & 

Joachain, 2003; Cohen-Tannoudji, et al, 2005): 

 

⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗𝑚⟩ = (−1)𝑗1+𝑗2−𝑗⟨𝑗2𝑗1;𝑚2𝑚1|𝑗2𝑗1; 𝑗𝑚⟩ 

                                                      = (−1)𝑗1+𝑗2−𝑗⟨𝑗1𝑗2;−𝑚1 −𝑚2|𝑗1𝑗2; 𝑗 − 𝑚⟩ 

                                   = (−1)𝑗1−𝑚1 �
2𝑗 + 1
2𝑗2 + 1

�
1 2⁄

⟨𝑗1𝑗;𝑚1 −𝑚|𝑗1𝑗; 𝑗2 − 𝑚2⟩ 

(2.78a) 

(2.78b) 

 
(2.78c) 

Using (2.78c), then (2.78a), then (2.78c) again, we find a fourth symmetry property that 

is of special interest in this analysis: 

 ⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗𝑚⟩ = (−1)2𝑗1−𝑗2+2𝑗−𝑚1+𝑚⟨𝑗𝑗2;−𝑚𝑚2|𝑗𝑗2; 𝑗1 − 𝑚1⟩ (2.78d) 

Using (2.74) to express (2.78d) in terms of a 3-j symbol, we find that 

 ⟨𝑗1𝑗2;𝑚1𝑚2|𝑗1𝑗2; 𝑗𝑚⟩ = (−1)2𝑗1−2𝑗2+3𝑗−2𝑚1+𝑚�2𝑗1 + 1 � 𝑗 𝑗2 𝑗1
−𝑚 𝑚2 𝑚1

� (2.79) 

Now, the Clebsch-Gordan coefficients vanish unless 𝑚 = 𝑚1 + 𝑚2 (Sakurai, 1994) and 

|𝑗1 − 𝑗2| ≤ 𝑗 ≤ 𝑗1 + 𝑗2 (Cohen-Tannoudji, et al, 2005; Sakurai, 1994).  For the Clebsch-

Gordan coefficient under consideration, �𝑗𝑖1;𝑚𝑖0�𝑗𝑖1; 𝑗𝑓𝑚𝑓�, we have the variable 

substitutions 𝑗1 = 𝑗𝑖;  𝑗2 = 1; 𝑗 = 𝑗𝑓;  𝑚1 = 𝑚𝑖;  𝑚2 = 0; 𝑚 = 𝑚𝑓.  In this case, we know 

that 𝑗1 − 𝑗2 + 𝑗 is an integer and that 𝑚1 = 𝑚, so (2.79) reduces to 

 �𝑗𝑖1;𝑚𝑖0�𝑗𝑖1; 𝑗𝑓𝑚𝑓� = (−1)𝑗𝑓−𝑚𝑓�2𝑗𝑖 + 1 �
𝑗𝑓 1 𝑗𝑖
−𝑚𝑓 0 𝑚𝑖

� (2.80) 
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In terms of the 3-j symbols, the Wigner-Eckart theorem (2.73) can be expressed as 

(Allard & Kielkopf, 1982; Cooper, 1967): 

 �𝑗𝑓𝑚𝑓�𝑇𝑞
(𝑘)�𝑗𝑖𝑚𝑖� = (−1)𝑗𝑓−𝑚𝑓 �

𝑗𝑓 𝑘 𝑗𝑖
−𝑚𝑓 𝑞 𝑚𝑖

� �𝑗𝑓�𝑇(𝑘)�𝑗𝑖⟩ (2.81) 

The matrix element (2.77) thus becomes 

 �𝑗𝑓𝑚𝑓�𝒅�𝑗𝑖𝑚𝑖� = (−1)𝑗𝑓−𝑚𝑓 �
𝑗𝑓 1 𝑗𝑖
−𝑚𝑓 0 𝑚𝑖

� �𝑗𝑓‖𝑑‖𝑗𝑖⟩ (2.82) 

which agrees with the normal result (Allard & Kielkopf, 1982). 

 Now, we examine the reduced matrix element of (2.69) to find 

 

⟨𝑗𝑓||[𝒅(𝜏)]𝐴𝑣||𝑗𝑖⟩ = ⟨𝑗𝑓||�𝑈−1𝑒𝑖𝐻𝐴𝜏𝒅𝑒−𝑖𝐻𝐴𝜏𝑈�
𝐴𝑣

||𝑗𝑖⟩ 

= �⟨𝑗𝑓||𝑈−1𝑒𝑖𝐻𝐴𝜏𝒅𝑒−𝑖𝐻𝐴𝜏𝑈||𝑗𝑖⟩�𝐴𝑣 

                = �⟨𝑗𝑓||𝑈−1||𝑗𝑓⟩⟨𝑗𝑓||𝑒𝑖𝐻𝐴𝜏||𝑗𝑓⟩⟨𝑗𝑓||𝒅||𝑗𝑖⟩⟨𝑗𝑖||𝑒−𝑖𝐻𝐴𝜏||𝑗𝑖⟩⟨𝑗𝑖||𝑈||𝑗𝑖⟩�𝐴𝑣 

= �⟨𝑗𝑓||𝑈−1||𝑗𝑓⟩𝑒−𝑖𝜔𝑖𝑓𝜏⟨𝑗𝑓||𝒅||𝑗𝑖⟩⟨𝑗𝑖||𝑈||𝑗𝑖⟩�𝐴𝑣 

 

 

 

 

(2.83) 

We can calculate the angular average in (2.83) by using the symmetry properties of the 

Wigner 3-j symbols (and their corresponding Clebsch-Gordan coefficients) (Allard & 

Kielkopf, 1982; Bransden & Joachain, 2003; Cohen-Tannoudji, et al, 2005; Cooper, 

1967; Sakurai, 1994).  Essentially, this involves an inverse application of the Wigner-

Eckart theorem to the reduced matrix elements ⟨𝑗𝑓||𝑈−1||𝑗𝑓⟩ and ⟨𝑗𝑖||𝑈||𝑗𝑖⟩ in (2.83), 

which introduces additional sums into the final result (Allard & Kielkopf, 1982): 

 ⟨𝑗𝑓||[𝒅(𝜏)]𝐴𝑣||𝑗𝑖⟩ = �𝑗𝑓‖𝑑‖𝑗𝑖⟩𝑒−𝑖𝜔𝑖𝑓𝜏�𝑈𝑓𝑓−1(𝑡 + 𝜏, 𝑡)𝑈𝑖𝑖(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

 (2.84a) 

where 

 

�𝑈𝑓𝑓−1(𝑡 + 𝜏, 𝑡)𝑈𝑖𝑖(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

= � (−1)2𝑗𝑓+𝑚𝑖+𝑚1 �
𝑗𝑓 1 𝑗𝑖
𝑚𝑓 𝑀 −𝑚2

� �
𝑗𝑓 1 𝑗𝑖
𝑚𝑓 𝑀 −𝑚𝑖

�
𝑚𝑖𝑚𝑓𝑚1𝑚2𝑀

 

× �𝑗𝑓𝑚𝑓�𝑈𝐶−1�𝑗𝑓𝑚1�⟨𝑗𝑖𝑚2|𝑈𝐶|𝑗𝑖𝑚𝑖⟩ 

 

 

 

(2.84b) 
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𝑈𝐶 refers to the the operator 𝑈𝑖𝑖 along the axis of the collision, and (2.84b) represents a 

transformation between space-fixed coordinates (or the lab frame), which requires an 

angular average, and body-fixed coordinates (Rose, 1957; Zare, 1988; Sakurai, 1994; 

Lewis, 2011). 

 Now, we have to look again at 𝑈(𝑡 + 𝜏, 𝑡).  We go back to (2.67), where 𝑉�𝑇 is the 

total interaction which accounts for all the individual interactions, 𝑣�𝑖, due to all the 

perturbers that collide with the radiator during the time 𝜏 (Allard & Kielkopf, 1982).  

Within the impact approximation, we include the assumption that the collisions occur 

separately; that is, we assume that the collisions occur one at a time, with enough time 

between collisions that they do not overlap.  In this case, 𝑉�𝑇 can be written as the sum of 

the individual 𝑣�𝑖, and (2.67) becomes 

 𝑈(𝑡 + 𝜏, 𝑡) = 𝒯exp �
1
𝑖
� ��𝑣�𝑖(𝑡′)

𝑁

𝑖=1

� 𝑑𝑡′
𝑡+𝜏

𝑡
� (2.85) 

Since the collisions are separated in time, only one of the individual 𝑣�𝑖 is nonzero at any 

given time, so the 𝑣�𝑖 commute with one another (Allard & Kielkopf, 1982).  Thus, we 

can rewrite (2.85) as 

 𝑈(𝑡 + 𝜏, 𝑡) = 𝒯� exp �
1
𝑖
� 𝑣�𝑖(𝑡′)𝑑𝑡′
𝑡+𝜏

𝑡
�

𝑁

𝑖=1

 (2.86) 

and, if we define the interaction potential time-evolution operator from an individual 

perturber as 

 𝑢𝑖(𝑡 + 𝜏, 𝑡) = 𝒯exp �
1
𝑖
� 𝑣�𝑖(𝑡′)𝑑𝑡′
𝑡+𝜏

𝑡
� (2.87) 

then the overall operator becomes 

 𝑈(𝑡 + 𝜏, 𝑡) = �𝑢𝑖(𝑡 + 𝜏, 𝑡)
𝑁

𝑖=1

 (2.88) 

From this, and the commutation of the 𝑣�𝑖, we return to the calculation of 
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�𝑈𝑓𝑓−1(𝑡 + 𝜏, 𝑡)𝑈𝑖𝑖(𝑡 + 𝜏, 𝑡)�
𝐴𝑣

= ���𝑢𝑖

𝑁

𝑖=1

�
𝑓𝑓

−1

��𝑢𝑖

𝑁

𝑖=1

�
𝑖𝑖

�

𝐴𝑣

 

                                   = ��𝑢𝑖𝑓𝑓
−1𝑢𝑖𝑖𝑖

𝑁

𝑖=1

�
𝐴𝑣

 

                        = �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑣
𝑁

 

 

 

 

 

 

(2.89) 

In this last line of (2.89), since the perturbations are assumed to be independent of each 

other, the average of the products is equal to the product of the averages (Allard & 

Kielkopf, 1982). 

 We can use the same Taylor-series approximation that led us from (2.38) to 

(2.42), (1 − 𝛼)𝑁 ≃ exp (−𝑁𝛼), for small 𝛼 and large 𝑁 (Allard & Kielkopf, 1982), to 

give 

 (𝑈−1𝑈)𝐴𝑣 = exp �−𝑁�1 − 𝑢𝑓𝑓𝑢𝑖𝑖�𝐴𝑣� (2.90) 

Now, we need to calculate the average over perturber velocities and positions.  As in 

earlier considerations, we integrate over the volume 𝒱 of the container, with 𝑓(𝑣) being 

the Maxwell distribution of velocities, b the impact parameter, and t the collision time: 

 �1 − 𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑣 =
1
𝒱
� 𝑓(𝑣)𝑑𝑣
∞

0
� � 2𝜋𝑏𝑑𝑏 𝑣𝑑𝑡 ��1 − 𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣

�
∞

0

∞

−∞
 (2.91) 

so, from (2.90) and (2.91), 

 
(𝑈−1𝑈)𝐴𝑣 = exp �−𝑛� 𝑓(𝑣)𝑑𝑣

∞

0
� � 2𝜋𝑏𝑑𝑏 𝑣𝑑𝑡 ��1 − 𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣

�
∞

0

∞

−∞
� 

= exp[−𝑛𝑔(𝜏)]                                                                         

 

 

(2.92) 

where n is the number density of perturbers and we define 𝑔(𝜏) as the triple integral in 

(2.92). 

 We can now recast (2.68) in these terms.  Since our line profile can be 

renormalized by a constant common factor, we can ignore everything that is constant 

through the line profile (Allard & Kielkopf, 1982).  What remains is: 
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 𝜑(𝜏) = �𝑒−𝑖𝜔𝑖𝑓𝜏 exp[−𝑛𝑔(𝜏)]
𝑖𝑓

 (2.93a) 

where 

 𝑔(𝜏) = � 𝑓(𝑣)𝑑𝑣
∞

0
� 2𝜋𝑏𝑑𝑏 
∞

0
� 𝑣𝑑𝑡 �1 − �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣

�
∞

−∞
 (2.93b) 

 The result (2.93b) is a more general result by Allard and Kielkopf, based on the 

Baranger model (Allard & Kielkopf, 1982).  As in the Anderson-Talman model, the 

impact approximation (which is followed by Baranger throughout) simplifies our result 

further (Allard & Kielkopf, 1982): 

 𝑔(𝜏) = 𝛼0 + 𝑖𝛽0 + (𝛼1 + 𝑖𝛽1)𝜏 (2.94) 

where the Anderson-Talman result (2.23b) assumes only the 𝜏-dependent term 

contributes.  Here, the third integral in (2.93b) integrates to give ∫ 𝑑𝑡∞
−∞ = 𝜏, with the rest 

being independent of t.  Thus, the 𝜏-dependent term can be derived from the scattering 

matrix elements: 

 𝛼1 + 𝑖𝛽1 = � 𝑓(𝑣)𝑣𝑑𝑣
∞

0
� 2𝜋𝑏𝑑𝑏 �1 − �𝑆𝑓𝑓−1𝑆𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣

� 
∞

0
 (2.95) 

The scattering matrix elements and the potential are related by a unitary transformation 

(Baranger, 1962): 

 𝑈(∞,−∞) = 𝑒𝑖𝐻𝐴𝑡0𝑆𝑒−𝑖𝐻𝐴𝑡0 (2.96) 

The scattering matrix elements can be written in the form (Allard & Kielkopf, 1982; 

Baranger, 1962): 

 𝑆𝑓𝑓−1𝑆𝑖𝑖 = exp[−𝜁 + 𝑖𝜂] (2.97) 

where the diagonal elements of the scattering matrix (or S-matrix) are given by 

(Baranger, 1962): 

 
𝑆𝑖𝑖 = ⟨𝑖|𝑆|𝑖⟩ = exp[−𝛿𝑖 − 𝑖𝜀𝑖] 

𝑆𝑓𝑓−1 = 𝑆𝑓𝑓
† = exp�−𝛿𝑓 + 𝑖𝜀𝑓� 

(2.98a) 

(2.98b) 

so 
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 𝑆𝑓𝑓−1𝑆𝑖𝑖 = exp[−𝜁 + 𝑖𝜂] (2.99) 

where 𝜁 = 𝛿𝑖 + 𝛿𝑓 and 𝜂 = 𝜀𝑖 − 𝜀𝑓.  Integrating over frequencies: 

 

��1 − 𝑆𝑓𝑓−1𝑆𝑖𝑖�𝑑𝜈 = �(1 − exp[−𝜁 + 𝑖𝜂])𝑑𝜈 

                                     = ��1 − 𝑒−𝜁 cos 𝜂�𝑑𝜈 + 𝑖 � 𝑒−𝜁 sin 𝜂 𝑑𝜈 

                                                = �Re�1 − 𝑆𝑓𝑓−1𝑆𝑖𝑖�𝑑𝜈 + 𝑖 � Im�1 − 𝑆𝑓𝑓−1𝑆𝑖𝑖�𝑑𝜈 

 

 

 

(2.100) 

so we find the width (𝑛𝛼1) and shift (𝑛𝛽1) of the collision-broadened line are given by 

 
𝑛𝛼1 = 𝑛� 𝑓(𝑣)𝑣𝑑𝑣

∞

0
� 2𝜋𝑏𝑑𝑏�1 − 𝑒−𝜁 cos 𝜂� 
∞

0
 

𝑛𝛽1 = 𝑛� 𝑓(𝑣)𝑣𝑑𝑣
∞

0
� 2𝜋𝑏𝑑𝑏 𝑒−𝜁 sin 𝜂 
∞

0
           

(2.101a) 

 

(2.101b) 

Allard and Kielkopf point out the special case of Lorentz scattering, in which 𝜁 is infinite.  

In this case, 𝑒−𝜁 = 0, and the line is unshifted (𝑛𝛽1 = 0).  The width of the line in this 

case is the collision frequency.  Additionally, if 𝜁 = 0, then the collision is completely 

elastic (Allard & Kielkopf, 1982).  We can then define the phase shift of the collision, 

𝜃 = 𝜂 + 𝑖𝜁, so that (2.99) becomes 

 𝑆𝑓𝑓−1𝑆𝑖𝑖 = exp[𝑖𝜃] (2.102) 

and the width and shift become 

 
𝑛𝛼1 = 𝑛� 𝑓(𝑣)𝑣𝑑𝑣

∞

0
� 2𝜋𝑏𝑑𝑏[1 − cos 𝜃] 
∞

0
 

𝑛𝛽1 = 𝑛� 𝑓(𝑣)𝑣𝑑𝑣
∞

0
� 2𝜋𝑏𝑑𝑏 sin𝜃 
∞

0
           

(2.103a) 

 

(2.103b) 

in a manner similar to the semiclassical theory from Anderson (Kielkopf, 1976). 

 The integral over impact parameters can be recast as a sum over orbital angular 

momenta using what Drake calls the Langer modification (Drake, 2006) 
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 𝑏 =
𝐿
ℏ𝑘

=
�𝑙(𝑙 + 1)

𝑘
 (2.104a) 

where k is the wave number, L is the magnitude of the orbital angular momentum, and l is 

its quantum number (and l is constrained to integer values, which makes 𝑑𝑙 = 1).  

Classically, the orbital angular momentum is 𝐿 = 𝑏𝜇𝑣, where 𝜇𝑣 is the linear momentum 

(Zare, 1988).  We can rewrite (2.104a) by squaring both sides and taking a derivative to 

find that 

 𝑏𝑑𝑏 =
(2𝑙 + 1)𝑑𝑙

2𝑘2
 (2.104b) 

The integrals over impact parameter in equations (2.101a)-(2.103b) therefore convert to 

 � 2𝜋𝑏𝑑𝑏 𝐹(𝜂 or 𝜃)
∞

0
= � 2𝜋

(2𝑙 + 1)
2𝑘2

𝐹(𝑙)
∞

𝑙=0

 (2.104c) 

since our phase shift (and S-matrix elements) depend on l. 

 Baranger’s approach to the integral over impact parameters is to express the 

forward scattering amplitude as a sum over partial waves (Baranger, 1958a; Baranger, 

1962).  The scattering amplitude for a given angle 𝜃 is given by: 

 𝑓(𝑘,𝜃) = �𝑓𝑙(𝑘)𝑃𝑙(cos𝜃)
∞

𝑙=0

= �
2𝑙 + 1

2𝑖𝑘
�𝑒2𝑖𝛿𝑙(𝑘) − 1�𝑃𝑙(cos 𝜃)

∞

𝑙=0

 (2.105) 

Now, to find the forward scattering amplitude, we set 𝑃𝑙(cos𝜃) = 1, so the forward 

scattering amplitude is given by: 

 𝑓(𝑘) = �
2𝑙 + 1

2𝑖𝑘
�𝑒2𝑖𝛿𝑙(𝑘) − 1�

∞

𝑙=0

 (2.106) 

 

Baranger expresses the width and shift of an isolated line in terms of this forward 

scattering amplitude (Baranger, 1962): 
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𝑛𝛼1 =
2𝜋ℏ𝑛
𝑚

Im[𝑓(𝑘)]𝐴𝑣 = �
𝜋ℏ𝑛
𝑚𝑘

�(2𝑙 + 1)(1 − cos 2𝛿𝑙)
∞

𝑙=0

�
𝐴𝑣

 

𝑛𝛽1 = −
2𝜋ℏ𝑛
𝑚

Re[𝑓(𝑘)]𝐴𝑣 = − �
𝜋ℏ𝑛
𝑚𝑘

�(2𝑙 + 1)(sin 2𝛿𝑙)
∞

𝑙=0

�
𝐴𝑣

 

(2.107a) 

 

(2.107b) 

where the averages are taken over k.  Since the collision momentum can be expressed as 

ℏ𝑘 = 𝑚𝑣, from the DeBroglie relation, the width and shift become 

 

𝑛𝛼1 = 𝑛 �
𝜋𝑣
𝑘2

�(2𝑙 + 1)(1 − cos 2𝛿𝑙)
∞

𝑙=0

�
𝐴𝑣

 

𝑛𝛽1 = −𝑛 �
𝜋𝑣
𝑘2

�(2𝑙 + 1)(sin 2𝛿𝑙)
∞

𝑙=0

�
𝐴𝑣

 

(2.108a) 

 

(2.108b) 

This looks just like the width and shift given by (2.103a) and (2.103b), after changing the 

integral over impact parameters to a sum over angular momenta, except that this method 

replaces the integral over v with a sum over k, and then the sum with an average by the 

expression (Szudy & Baylis, 1974) 

 〈𝐺(𝑘)〉𝑘 = �𝑃(𝑘)𝐺(𝑘)
𝑘

 (2.109) 

where 𝑃(𝑘) is the probability that an initial state has wave number 𝑘.  This also differs in 

that Baranger’s scattering phase shift 𝛿𝑙 is half of the phase shift of the collision, 𝜃, 

discussed above.  If the potentials are spherically symmetric, 𝛿𝑙 = 𝛿𝑙
(𝑈) − 𝛿𝑙

(𝐿), where 

𝛿𝑙
(𝑈) and 𝛿𝑙

(𝐿) are the phase shifts for the upper and lower states of the atom, respectively.  

Further, Szudy and Baylis assert that the width 𝑛𝛼1 is the HWHM (Half Width at Half-

Maximum), rather than the FWHM (Szudy & Baylis, 1996). 

 If we assume the probability distribution to be a Boltzmann distribution, and if we 

assume an ideal gas (𝑃𝑉 = 𝑁𝑘𝐵𝑇, or 𝑃 = 𝑛𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant)—

that is, if we have a thermally-distributed ideal gas—we can combine equations (2.103a)-

(2.104c) to find 
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𝑛𝛼1
𝑃

= �
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp (−
𝐸
𝑘𝐵𝑇

)∆𝐸
∞

𝐸=0

� (2𝐽 + 1)[1 − cos 𝜃𝐽(𝐸)]
∞

𝐽=0.5

 

𝑛𝛽1
𝑃

= −�
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp (−
𝐸
𝑘𝐵𝑇

)∆𝐸
∞

𝐸=0

� (2𝐽 + 1) sin𝜃𝐽(𝐸)
∞

𝐽=0.5

 

(2.110a) 

 

(2.110b) 

 

The left-hand side of each equation gives the width and shift, divided by the pressure.  

We can calculate these values in the standard experimental units of MHz/torr. 

Kielkopf indicates one means of estimating the phase shift, given the difference 

potential.  Assuming adiabaticity and the classical path approximation, he writes his 

estimate of the phase shift as (Kielkopf, 1976): 

 𝜃(𝑥, 𝑏,𝑢) = 2𝜋
𝑐
𝑣
�∆𝑊[(𝑥2 + 𝑦2) + 𝑏2]1 2⁄ 𝑑𝑦
𝑢

0

 (2.111) 

where ∆𝑊[(𝑥2 + 𝑦2) + 𝑏2]1 2⁄ = ∆𝑊(𝑅) is the difference potential in wavenumbers, b 

is the impact parameter of the collision, the integration of y is in units of cm, c is the 

speed of light, 𝑣 = �3𝑘𝑇 𝜇⁄  is the mean velocity of the perturber, and 𝜇 is the reduced 

mass (Kielkopf, 1976).  In the static approximation, u is very small, ∆𝑊 does not vary 

significantly over the range of u (and so can be pulled out of the integral), and the phase 

shift becomes 

 𝜃(𝑥, 𝑏,𝑢)𝑠𝑡𝑎𝑡𝑖𝑐 = 2𝜋
𝑐
𝑣
∆𝑊(𝑅)𝑢 (2.112a) 

In the impact approximation, which the Baranger model assumes (Baranger, 1958a), u is 

very large, and the calculation becomes largely independent of x.  The phase shift looks 

like 

 𝜃(𝑏)𝑖𝑚𝑝𝑎𝑐𝑡 = 2𝜋
𝑐
𝑣
� ∆𝑊[𝑦2 + 𝑏2]1 2⁄ 𝑑𝑦
∞

−∞

 (2.112b) 

and 
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𝛼1 = � 2𝜋𝑏𝑑𝑏[1 − cos 𝜃] 

∞

0
 

𝛽1 = � 2𝜋𝑏𝑑𝑏 sin 𝜃 
∞

0
           

(2.113a) 

 

(2.113b) 

just as in the Anderson-Talman model, where (Kielkopf, 1976) 

 
𝛼 = 𝛼1𝑢 + 𝛼0 

𝛽 = 𝛽1𝑢 + 𝛽0 

(2.114a) 

(2.114b) 

 For a given alkali-noble gas mixture, we could use the difference potentials that 

appear in Fig. 9 in place of ∆𝑊 in (2.111b).  In order to perform a rigorous calculation of 

the integral in (2.112b), we first need a curve fit for the difference potentials plotted in 

Fig. 2.2h. 

In order to perform a fully quantum-mechanical calculation, however, we use the 

ab initio potentials developed by L. Blank (Blank, Weeks, and Kedziora, 2012) to 

calculate scattering matrix (S-matrix) elements by the Channel Packet Method.  We can 

use those S-matrix elements to calculate the phase shift of a given state during a collision.  

We use the phase shifts (and, more importantly, the phase difference between a given 

excited state and the ground state) rather than a more direct calculation using 𝑆𝑓𝑓−1𝑆𝑖𝑖 

because calculations of the phase differences provides an intermediate check of the 

viability of the calculation (that is, whether the phase difference vanishes at high values 

of E and J).  We then use the calculated phase difference 𝜃𝐽(𝐸) to numerically integrate 

equations (2.110a) and (2.110b) to find the broadening (width) and shift of the given 

spectral line. 

 

2.4.  Calculation of S-Matrix Elements 

The Baranger model requires that we know the S-matrix (or scattering matrix) 

elements in order either to integrate directly using (2.95) or to perform the calculation of 

phase differences which are then integrated using (2.110a) and (2.110b).  In either case, 

however, we require some method of calculating the S-matrix elements. 
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The scattering operator 𝑆̂ identifies how reactants |Ψ𝑖𝑛⟩ in the infinite past map to 

products |Ψ𝑜𝑢𝑡⟩ in the infinite future, 

 |Ψ𝑜𝑢𝑡⟩ = 𝑆̂ |Ψ𝑖𝑛� (2.115) 

where 𝑆̂ is unitary (that is, 𝑆̂−1 = 𝑆̂†) and time-independent and contains all of the 

information about the interaction potential (Tannor and Weeks, 1992; Weeks and Tannor, 

1993).  The scattering operator can be defined in terms of the Channel Moller operators 

in the limit of infinite time before or after the collision: 

 𝑆̂ = Ω−†Ω+ (2.116) 

where the Channel Moller operators are given by: 

 Ω± = lim
𝑡→∓∞

�exp (+
𝑖𝐻𝑡
ℏ

)exp (−
𝑖𝐻0𝑡
ℏ

)� (2.117) 

Now, we can use completeness to write the incoming reactant (or outgoing product) state 

in the form 

 |Ψ𝑖𝑛 (𝑜𝑢𝑡)� = � 𝑑𝑘 |𝑘𝛾𝛾��𝑘𝛾𝛾�Ψ𝑖𝑛 (𝑜𝑢𝑡)�
∞

−∞
= � 𝑑𝑘 𝜂+(−)|𝑘𝛾𝛾�

∞

−∞
 (2.118) 

where the |𝑘𝛾𝛾� are a separable set of reactant and product states and 𝛾 represents the full 

set of internal quantum states of the reactants and products (Lewis, 2011).  The Channel 

Moller operators are then used to compute reactant and product Moller states: 

 |Ψ±� = Ω±|Ψ𝑖𝑛 (𝑜𝑢𝑡)� (2.119) 

Having calculated the Moller reactant state, we propagate the wavepacket through 

the collision process to determine the Moller product state.  The correlation function is a 

measure of the time-dependent overlap between the Moller product state and the Moller 

reactant state; that is, the projection of the Moller product (time-evolved) state onto the 

Moller reactant (initial, or t = 0) state or, in our collision process, the projection of the 

outbound state (the state after the collision) onto the inbound state (the state before the 

collision).  In atomic units the time-dependent correlation function, C(t), has the form 

 𝐶(𝑡) = ⟨Ψ−|exp (−𝑖𝐻𝑡)|Ψ+⟩ (2.121) 
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 We can now calculate the scattering matrix element, S, by calculating the Fourier 

transform of the correlation function and dividing by the channel packet expansion 

coefficents (Tannor and Weeks, 1992; Weeks and Tannor, 1993).  In atomic units, 

 

 𝑆 =
(2𝜋)−1[|𝑘′||𝑘|]1/2

𝜂−∗ (𝑘′)𝜂+(𝑘)
� 𝑑𝑡 exp (𝑖𝐻𝑡)𝐶(𝑡)
∞

−∞
 (2.122) 

 

This yields a scattering matrix element as a function of energy.  Since the total 

Hamiltonian of the system depends on J, so does the scattering matrix element. 

 We begin our propagation at an interatomic separation of 100 Bohr, and we 

consider anything farther out than 20 Bohr to be “asymptotic” with regard to the 

interaction potential.  However, the centrifugal effective potential reaches farther out for 

relevant values of the total angular momentum J, so even if we place the initial 

wavepacket at around 100 Bohr we still see a significant difference with J.  We therefore 

need to generate the relevant Moller reactant states, one for each value of J, which we can 

use in the Channel Packet Method (Lewis, 2011).  Given infinite amounts of time and 

computational resources, the obvious method of generating a Moller reactant state would 

be to generate a Gaussian wavepacket starting an infinite amount of time before the 

collision (t = -∞) and then propagate that wavepacket until t = 0 to form the initial state.  

Since time and computational resources are finite, however, we must choose a suitably 

large time for “t = -∞” such that the Moller reactant states can be calculated in a 

reasonable amount of time but that the wavepacket at the time we call “t = -∞” does not 

overlap so much with the centrifugal effective potentials for relevant values of J that it 

misbehaves significantly at low kinetic energies.  Figure 2.4a shows the intermediate 

Moller state, in the position representation, for Rb + He compared with the centifugal 

effective potentials at J = 50.5, 100.5, 150.5. 
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Wavepacket propagation is a method by which the wavepacket representing an 

atom is propagated through time-evolution operators in a stepwise fashion to model the 

atom’s behavior under the influence of a potential. 

 

 

Fig. 2.4a:  Intermediate Moller states overlapped with centrifugal effective potentials.  
The inset graph is a zoom into the lower-left corner of the main graph in order to show 
the overlap of the centrifugal potentials and the intermediate Moller state.  As J increases 
the centrifugal effective potential increases and has greater impact on the Moller states. 
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 We begin with the Schrödinger equation: 

 𝑖ℏ
𝑑
𝑑𝑡

|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩ (2.123) 

 

where the time-dependent wavefunction can be expressed in terms of a time-evolution of 

an initial wavefunction: 

 |𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡/ℏ|𝜓(0)⟩ (2.124) 

 

Now, the Hamiltonian can be expressed in terms of the kinetic and potential energies of 

the system:  H = T + V, so 

 |𝜓(𝑡)⟩ = 𝑒−𝑖(𝑇+𝑉)𝑡/ℏ|𝜓(0)⟩ (2.125) 

 

where V is the potential and 𝑇 = 𝑝2 2𝜇⁄  is the kinetic energy, also expressed through the 

de Broglie relation as 

 𝑇 =
(2𝜋ℏ𝑘)2

2𝜇
=

2𝜋2ℏ2

𝜇
𝑘2 (2.126) 

Here, we use the split operator formalism, which splits the action of the potential on 

either side of the propagation.  For short time intervals (small ∆𝑡), 

 𝑒−𝑖𝐻𝑡/ℏ ≈ 𝑒−𝑖�
𝑉
2�𝑡/ℏ𝑒−𝑖

2𝜋2ℏ2
𝜇 𝑘2𝑡/ℏ𝑒−𝑖�

𝑉
2�𝑡/ℏ (2.127) 

 

We then operate, in turn, with each of the exponentials in (2.127) on the wavefunction 

(and we use the Taylor-series expansion of the exponential where necessary to be able to 

operate with the operators embedded within the exponentials). 

 Since the time-evolution operator (2.127) contains operators in both position-

space and momentum-space, we must be able to transform our wavefunction between 
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position and momentum representations.  To achieve this, we use the Fourier 

transformation and its inverse: 

 

|𝜓(𝑘, 𝑡)⟩ =
1

√2𝜋
� 𝑑𝑥 𝑒−𝑖𝑘𝑥 |𝜓(𝑥, 𝑡)⟩
∞

−∞

 

|𝜓(𝑥, 𝑡)⟩ =
1

√2𝜋
� 𝑑𝑥 𝑒+𝑖𝑘𝑥 |𝜓(𝑘, 𝑡)⟩
∞

−∞

 

(2.128a) 

 

(2.128b) 

In order to achieve this in a computer model, it is necessary to use a Discrete Fourier 

Transform (DFT).  The usual approach to performing a DFT on a computer is to use a 

Fast Fourier Transform (FFT), which reduces the number of calculations for a 

wavefunction with N elements from 𝑁2 to 𝑁 log𝑁 (Cooley & Tukey, 1965). 

 Computationally, one cycle—that is, the propagation of the wavepacket through 

one time increment—looks like the following, where FT denotes a Fourier Transform: 

 𝜓�𝑥, 𝑡𝑞+1� = 𝑒−𝑖�
𝑉
2�𝑡/ℏ ⋅ 𝐹𝑇−1 �𝑒−𝑖

2𝜋2ℏ2
𝜇 𝑘2𝑡/ℏ ⋅ �𝐹𝑇 �𝑒−𝑖�

𝑉
2�𝑡/ℏ𝜓�𝑥, 𝑡𝑞���� (2.129) 

In step-by-step form, the wavepacket propagation looks like: 

1. Operate on the wavefunction with 𝑒−𝑖�
𝑉
2�𝑡/ℏ:  𝜓(𝑥, 𝑡0) → 𝜓(𝑥, 𝑡′0). 

2. Fourier-transform to momentum space:   𝜓(𝑥, 𝑡′0) → 𝜓(𝑘, 𝑡′0). 

3. Operate with the kinetic energy operator, 𝑒−𝑖
2𝜋2ℏ2

𝜇 𝑘2𝑡/ℏ:  𝜓(𝑘, 𝑡′0) → 𝜓(𝑘, 𝑡′′0). 

4. Invert the Fourier transform:  𝜓(𝑘, 𝑡′′0) → 𝜓(𝑥, 𝑡′′0). 

5. Operate on the wavefunction with 𝑒−𝑖�
𝑉
2�𝑡/ℏ:  𝜓(𝑥, 𝑡′′0) → 𝜓(𝑥, 𝑡1). 

6. Repeat as necessary to cover the total time 𝑡0 … 𝑡. 

 

 The method we use is to begin with a Gaussian wavepacket at t = 0.  We 

propagate the wavepacket backward as if it were a free particle for a long enough time 

that it does not overlap significantly with the centrifugal effective potential.  We then 

propagate this “intermediate Moller state” forward in time under the full Hamiltonian 
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until t = 0.  This effectively generates an intermediate state (at infinity) that would have 

evolved into a pure Gaussian wavepacket under no potential but that instead evolves into 

the relevant Moller reactant state under the full Hamiltonian of the system.  Figure 2.4b 

shows, in the position representation, both the initial Gaussian wavepacket (which would 

be identical to the Moller reactant state if we could have J = 0) and the Moller reactant 

states for Rb + He at J = 50.5, 100.5, 150.5.  Since we calculate the Moller reactant states 

in the asymptotic limit of the potential energy surfaces, they do not depend on the 

molecular state of the system but only on J and the reduced mass, μ, of the system. 

 

 

Fig. 2.4b:  Moller reactant states and initial Gaussian for Rb + He, for J = 50.5, 100.5, 
150.5.  As J increases the centrifugal effective potential increases and causes the initial 
reactant Moller state to be broadened and shifted from the starting point of 100 Bohr. 
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In order to calculate the scattering matrix, or S-matrix, elements, we first calculate 

the correlation function.  We propagate the Moller reactant states through the collision 

process to determine the Moller product states and then calculate the time-dependent 

correlation functions using equation (2.121).  The wavepacket is propagated using the 

split operator method, in which the time evolution of wavepackets is given by (Weeks, 

Niday, and Yang, 2006): 

 

 

( )
( )

( )
( )

1 11 12 1

2 21 22 2

11 12 11 12

21 22 21 22

, ,0
, exp ,0

                    exp exp
2

R t H H R
tR t i H H R

V V T T
t ti V V i T T

Φ ∆   Φ    
∆     Φ ∆ = − Φ     

          
      

∆ ∆      ≈ − −     
           







    

 

 

 

     

( )
( )

11 12 1

21 22 2

,0
                                      exp ,0

2

V V R
ti V V R




  Φ  
∆    × − Φ   

        







   

 (2.130) 

 

and we use a unitary transformation between adiabatic and diabatic representations to 

ensure that the potential and kinetic energy terms operate correctly.  In body-fixed 

coordinates, the close-coupled Hamiltonian is (Lewis, 2011): 

 

 ( )2 2 2 2
0

 2 2

ˆ ˆˆ1ˆ ˆ ˆ
2 2 2

Mz
M Ng ls

d
dR R Rµ µ µ

+ −
− +− ++ − = − + + + + + 

 

j J j JJ j jH I F H V  (2.131) 

 

For the 2
1/2A Π , 2

3/2A Π , and 2
1/2B Σ  states, the Hamiltonian has matrix elements of the 

form (Blank, Weeks, and Kedziora, 2012; Allard and Kielkopf, 1982): 
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2

( )
2

(2 ) ( ) 2
3 2 3

( 2 )2
3 3

( )
2

(2 ) ( ) 2
3 2 3

( 2 )2
3 3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 01
0 0 0 0 02
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 ( ) 0 0 0

0 ( ) ( ) 0 0 0

0 0 0 0 0

0 0 0 0 ( )

0 0 0 0 ( ) ( )

d
dR

d
dR

d
dR

d
dR

d
dR

d
dR

a R

a R

a R

a R

H

a R

a R

µ

Σ+Π

Σ+ Π

Σ+Π

Σ+ Π

 
 
 
 

= −  
 
 
  
 

 Π +


+ − Σ −Π

− Σ −Π −
+

Π +

+ Σ −Π

Σ−Π −
( )( )

( )( )

( )( )

( )( )

1/2313
2 24

2 2

1/231 13
2 2 4

2 2 2

3
4

2 2

1/2313
2 24

2 2

1/231
2 2

2

3( 1)

2 2

3 ( 1) 2( 1)
2 2 2

( 1) 1
2 2

3( 1)

2 2

32( 1)
2 2

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0

J JJ J

R R

J J J J J
R R R

J J J
R R

J JJ J

R R

J JJ
R

µ µ

µ µ µ

µ µ

µ µ

µ

 − ++ −  

 − + + + + 

+ + +

 − ++ −  

 − ++  





 
 
 
 
 
  



−

− −

−
+

−

− −
13
4

2 2

3
4

2 2

( 1)

2

( 1)1
2 2

0

0 0 0 0

J J

R R

J JJ
R R

µ µ

µ µ

+ +

+ ++

 
 
 
 
 
 
 
 
 
 
 
 
 
  − 

 

(2.132a) 

Note that the omission of the 2
1

2
J

Rµ
+  terms in the (2,5), (3,6), (5,2), and (6,3) 

elements of the third matrix in (2.132a) has a small effect on the calculations and permits 

the 6x6 matrix to be approximated by a 3x3 matrix. 
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 When we refer to coupling in this work, we must be careful to distinguish 

between two coupling scenarios.  The first scenario involves the potential matrix as 

shown in (2.132a) and approximated by a 3x3 matrix.  We will consider the second 

scenario, in which we calculate broadening and shift coefficients for the D2 line using its 

constituent potential energy surfaces, in section 2.6.  In the first scenario, we consider 

two configurations of the system, coupled or uncoupled.  Whether the system is coupled 

in this scenario is determined by which version of the potential matrix we use.  We begin 

from (2.132a), which we call the fully-coupled 6x6 potential energy matrix in the diabatic 

representation.  The first approximation we make is the omission of the 2
1

2
J

Rµ
+  terms 

as discussed above, which transforms (2.132a) into block-diagonal form with two 

identical 3x3 blocks; we use the top-left 3x3 block with the understanding that each state 

is two-fold degenerate in spin.  We then have for our 3x3 coupled potential energy matrix 

 

( )( )

( )( )

1/2313
2 24

2 2

1/231 13
2 2 4

2 2

3
4

2

3( 1)( )
2 2 2

3 ( 1)(2 ) ( ) 2
3 2 32 2

( 1)( 2 )2
3 3 2

0

( )

0 ( ) ( )

J JJ Ja R
R R

J J J Ja R
eff R R

J J

R

V

a R

µ µ

µ µ

µ

 − ++ −  

 − + + +Σ+Π 

+ +Σ+ Π

 Π + + − 
 
 = − + + − Σ −Π
 
 − Σ −Π − + 
 

 
(2.132b) 

where Π  and Σ  are the diabatic potentials.  Equation (2.132b) is the effective potential 

matrix we use to generate coupled S-matrix elements.  We generate uncoupled S-matrix 

elements by making the further approximation that the off-diagonal Coriolis terms (the 

(1,2) and (2,1) elements in the 3x3 matrix) are zero, which then allows us to diagonalize 

the potential matrix in terms of the adiabatic potentials of the three excited states: 

 

3
4

2

13
4

2

3
4

2

( 1)
3/2 2

( 1)
1/2 2

( 1)
1/2 2

( ) 0 0

0 ( ) 0

0 0 ( )

J J

R

J J
eff R

J J

R

V

V V

V

µ

µ

µ

+ −

+ +

+ +

 Π +
 
 = Σ + 
 
 Π + 

 (2.132c) 

Equation (2.132c) is the effective potential matrix we use in the uncoupled case. 
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Because the coupling between the positive-spin states and the negative-spin states 

is not significant, this research will use the 3x3 matrix version of this coupling, 

represented by the upper-left 3x3 block in each term of (2.132a).  Since we are now 

propagating the wavepacket under the full Hamiltonian in a region where all portions of 

the Hamiltonian contribute to the dynamics of the system, our correlation functions 

depend not only on J but also on the initial molecular state of the system.  Figure 2.4c 

shows the correlation functions as a function of time for the 2
1/2A Π  state of Rb + He, for 

J = 50.5, 100.5, 150.5.  Here we include both the spin-orbit and Coriolis couplings, which 

we call the “fully-coupled” case. 

 

Fig. 2.4c:  Squares of correlation functions for the 2
1/2A Π  state of Rb + He. 
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 We can then calculate the S-matrix elements using equation (2.122).  This yields a 

scattering matrix element as a function of energy and J.  Figure 2.4d shows the square of 

the S-matrix element as a function of energy for the 2
1/2A Π  → 2

1/2A Π  transition in Rb + 

He, for J = 50.5, 100.5, 150.5. 

 

Fig. 2.4d:  Squares of the S-Matrix elements for the 2
1/2A Π  → 2

1/2A Π  transition in  
Rb + He. 
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2.5. Calculation of Line Broadening and Shift Coefficients 

In order to find the broadening and shift coefficients, we must perform the sums 

in (2.110a) and (2.110b) over kinetic energy (E) and total angular momentum (J).  Total 

angular momentum is constrained to be of half-integer quantity (in atomic units), while 

energy is quantized only by the energy resolution in the computer code we use to 

calculate scattering matrix elements (in this case, our energy resolution is ∆𝐸 =

(0.01 Hartree)/8192 = 1.22 × 10−6Hartree).  We calculate the scattering phase shifts 

from the corresponding (complex) S-matrix elements: 

 
( )
( )

1 Im
tan

Re
S
S

ϕ −  
=   

 
 (2.133) 

 

Since the arctangent function is periodic, we have to check for the start of a new cycle in 

phase, and then add 2π to allow the total phase to accumulate.  Fig. 2.5a shows the 

scattering phase shift, as a function of J and E, for the 2
1/2A Π  state of Rb + He, in the 

uncoupled case.  Fig. 2.5b shows the scattering phase shift for the 2
1/2X Σ  (ground) state 

of Rb + He, in the uncoupled case. 

We then calculate the scattering phase shift difference between a given excited 

state and the ground state: 

 excited state ground state( )J Eθ ϕ ϕ= −  (2.134) 

 

Once we have the scattering phase shift difference for the entire range (in J and E) 

over which the collision can be said to occur, we can subtract an overall constant phase 

from the entire data set without loss of generality; here we determine an arbitrary zero of 

phase, in exactly the same way that the zero of potential energy is an arbitrary choice.    
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Fig. 2.5a:  Phase shift for the 2
1/2A Π  state of Rb + He, uncoupled.  See (2.132c). 

 

 

Fig. 2.5b:  Phase shift for the ground state of Rb + He, uncoupled.  See (2.132c). 
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Fig. 2.5c:  Phase shift difference for the 2
1/2A Π  state of Rb + He, uncoupled, side view 

(top) and top-down view (bottom) .  See (2.132c). 
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Fig. 2.5c shows the scattering phase shift difference between Figs. 2.5a and 2.5b, 

as calculated by (2.134), for energies ranging from E = 0 Hartree to E = 0.0075 Hartree 

and total angular momenta ranging from J = 0.5 to J = 220.5.  Since the phase shifts in 

Figs. 2.5a and 2.5b are approximately linear for larger energies (beyond E = 0.006 

Hartree), we can extend the phase shifts by assuming a linear progression in energy 

beyond E = 0.0075 Hartree (for which we have rigorous calculations).  In general we will 

extend the phase shifts out to E = 0.012 Hartree, which is our limit with the values of J 

we have calculated; we also have no concrete information about what new phenomena 

might occur at higher energies, so we would be naïve to extend the phase shifts linearly 

too much farther.  In Fig. 2.5d, we do the same as in Fig. 2.5c, but here the calculations 

include both the spin-orbit and Coriolis couplings, which we call the “fully-coupled” 

case.  Note by comparing Fig. 2.5c (above) with Fig. 2.5d (below), and by comparing 

Figs. 2.5e-f with Figs. 2.5g-h (below), it is possible to see how non-adiabatic dynamics 

influences terms in the broadening and shift calculations. 

 We then calculate the sine and cosine of the scattering phase shift differences and 

sum these results over total angular momentum and kinetic energy, as prescribed in 

(2.110a) and (2.110b), to find the broadening and shift coefficients (and then convert 

units to MHz/torr).  Figs. 2.5e-f show the sine and cosine of the scattering phase shift 

difference, scaled by the Boltzmann distribution at temperatures T = 100 K, 394 K, and 

800 K, for the 2
1/2A Π  state of the uncoupled case of Rb + He.  Figs. 2.5g-h show the 

same quantities in the fully-coupled case.  Figs. 2.5a-h look similar for all nine M + Ng 

pairs, so it is difficult to gain physical insight at a glance, even though there are subtle 

differences that give rise to different broadening and shift coefficients when integrated.  

Therefore we will limit the output to the more-instructive broadening and shift coefficient 

calculations in Chapter III. 
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Fig. 2.5d:  Phase shift difference for the 2
1/2A Π  state of Rb + He, fully coupled, side view 

(top) and top-down view (bottom) .  See (2.132b). 
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Fig. 2.5e:  �1 − cos𝜃𝐽(𝐸)� × Boltzmann distribution (left) and sin𝜃𝐽(𝐸) × Boltzmann 
distribution (right) for the 𝐴2Π1

2�
 state of the uncoupled case of Rb + He, at T = 100 K 

(top), T = 394 K (middle), and T = 800 K (bottom), side view.  See (2.132c). 
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Fig. 2.5f:  �1 − cos𝜃𝐽(𝐸)� × Boltzmann distribution (left) and sin𝜃𝐽(𝐸) × Boltzmann 
distribution (right) for the 𝐴2Π1

2�
 state of the uncoupled case of Rb + He, at T = 100 K 

(top), T = 394 K (middle), and T = 800 K (bottom), top-down view.  See (2.132c). 
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Fig. 2.5g:  �1 − cos 𝜃𝐽(𝐸)� × Boltzmann distribution (left) and sin𝜃𝐽(𝐸) × Boltzmann 
distribution (right) for the 𝐴2Π1

2�
 state of the fully coupled case of Rb + He, at T = 100 K 

(top), T = 394 K (middle), and T = 800 K (bottom), side view.  See (2.132b).  These plots 
are shown primarily to compare with Fig. 2.5e.  Their actual form is modified somewhat 
when used to calculate the broadening coefficient, as discussed in section 2.6. 
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Fig. 2.5h:  �1 − cos 𝜃𝐽(𝐸)� × Boltzmann distribution (left) and sin𝜃𝐽(𝐸) × Boltzmann 
distribution (right) for the 𝐴2Π1

2�
 state of the fully coupled case of Rb + He, at T = 100 K 

(top), T = 394 K (middle), and T = 800 K (bottom), top-down view.  See (2.132b).  These 
plots are shown primarily to compare with Fig. 2.5f.  Their actual form is modified 
somewhat when used to calculate the shift coefficient, as discussed in section 2.6. 
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Figs. 2.5e and 2.5g are then integrated to determine broadening and shift 

coefficients at a given temperature.  The calculations of (2.110a) and (2.110b) are then 

repeated for multiple temperatures.  Figs. 2.5i and 2.5j show the uncoupled broadening 

and shift coefficients, as functions of temperature, compared with results from the 

Anderson-Talman model (Blank, Weeks, and Kedziora, 2012; Anderson, 1949 and 1952; 

Anderson and Talman, 1956). 

 

Fig. 2.5i:  Broadening coefficients vs. temperature for Rb + He, uncoupled 
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Fig. 2.5j:  Shift coefficients vs. temperature for Rb + He, uncoupled 

 

 The calculations of (2.110a) and (2.110b) can be repeated in a special case that 

makes it more aptly compared with the Anderson-Talman model.  In particular, the 

Anderson-Talman model does not assume a thermal distribution of kinetic energies in the 

collision phase space; rather, all collisions are assumed to occur at the thermal average 

velocity determined by (2.27c).  If we assume the same average velocity in the Baranger 

model, we replace the Boltzmann distribution with an average kinetic energy, 

 

 𝐸� =
1
2
𝜇𝑣̅2 =

4𝑘𝐵𝑇
𝜋

 (2.135) 
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The broadening and shift coefficients of (2.110a) and (2.110b) thus become 

 

𝑛𝛼1
𝑃

= 𝜋ℏ2�
2
𝜇3
𝐸�−1 2⁄ � (2𝐽 + 1)[1 − cos 𝜃𝐽(𝐸)]

∞

𝐽=0.5

 

𝑛𝛽1
𝑃

= −𝜋ℏ2�
2
𝜇3
𝐸�−1 2⁄ � (2𝐽 + 1) sin𝜃𝐽(𝐸)

∞

𝐽=0.5

 

(2.136a) 

 

(2.136b) 

 

Figs. 2.5k and 2.5l show the uncoupled broadening and shift coefficients in this average 

kinetic energy case, as functions of temperature, compared with results from the 

Anderson-Talman model. 

 

Fig. 2.5k:  Broadening coefficients vs. temperature for Rb + He, uncoupled, average 
kinetic energy 
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Fig. 2.5l:  Shift coefficients vs. temperature for Rb + He, uncoupled, average kinetic 
energy 

 

 Once we have the broadening and shift coefficients, we can calculate the 

broadening and shift cross sections.  The first step is to recast the broadening and shift 

coefficients in terms of rates per concentration rather than rates per pressure.  We do this 

by multiplying by B
Pk T
n

=  so that we deal with 1α  and 1β  rather than 1n
P
α  and 1n

P
β  as 

in (2.136a-b).  Results for these are shown in Figs. 2.5m-n. 
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Fig. 2.5m:  Broadening rates vs. temperature for Rb + He. 

 

Fig. 2.5n:  Shift rates vs. temperature for Rb + He. 
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Once we have 1α  and 1β  we can calculate the broadening and shift cross sections.  

Assuming the cross section, 𝜎, is independent of the relative speed during the collision 

process, we can divide the broadening or shift coefficient by the average speed at a given 

temperature (Pitz, Fox, and Perram, 2010): 

 

 
𝜎𝛼(𝑇) = 𝛼1 �

8𝑘𝐵𝑇
𝜋𝜇

�
−1 2⁄

 

𝜎𝛽(𝑇) = 𝛽1 �
8𝑘𝐵𝑇
𝜋𝜇

�
−1 2⁄

 

(2.137a) 

 

(2.137b) 

 

Here, we must be careful that the thermal average speed does vary with temperature, so 

we are not simply dividing the results in Figs. 2.5m-n by a constant.  The result is a cross 

section that decays with increasing temperature; we expect that a greater kinetic energy 

results in a lesser fractional change (and less time spent) within the potential energy curve 

during the collision process.  The results for the cross sections of Rb + He are shown in 

Figs. 2.5o-p below. 
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Fig. 2.5o:  Broadening cross sections vs. temperature for Rb + He. 

 

Fig. 2.5p:  Shift cross sections vs. temperature for Rb + He. 
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2.6 Coupling scenario for D2 line calculation in the Baranger Model 

 Going back to the Baranger model, as extended by Allard and Kielkopf (Allard & 

Kielkopf, 1982) we have a starting point for our study of spectral line broadening in 

equations (2.93a) and (2.93b): 

 𝜑(𝜏) = �𝑒−𝑖𝜔𝑖𝑓𝜏 exp[−𝑛𝑔(𝜏)]
𝑖𝑓

 (2.93a) 

 𝑔(𝜏) = � 𝑓(𝑣)𝑑𝑣
∞

0
� 2𝜋𝑏𝑑𝑏 
∞

0
� 𝑣𝑑𝑡 �1 − �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣

�
∞

−∞
 (2.93b) 

As Allard and Kielkopf point out, such a calculation is “nontrivial in all but two-level 

atoms [atoms with only one potential difference curve, or adiabatic processes] because of 

fine-structure transitions between excited states that occur during the collision” (Allard & 

Kielkopf, 1982).  That is, fine-structure mixing produces a set of coupled equations 

which must be solved numerically; further, such calculations were prohibitively 

computationally-intensive at that time.  However, this is a critical problem in any 

consideration of an Optically Pumped Alkali Laser system, because a two-level system 

generally will not perform as a laser.  Such effects are part of the physical processes 

involved in spectral line broadening.  A perturber can, for instance, propagate inward 

(toward the emitter atom) along one potential surface, go through a transition, and then 

propagate outward (away from the emitter atom) along a different potential surface.  The 

conventional workaround to modeling nonadiabatic coupling in atomic collisions is to 

approximate the colliding system as a diatomic molecular system and each stage of the 

collision as an appropriate Hund’s state (Allard & Kielkopf, 1982; Bransden & Joachain, 

2003; Drake, 2006; Zare, 1988).  Allard begins with (2.93b), where comparing (2.90) and 

(2.93b) gives 

 

�1 − �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣
�

= 1 − � (−1)−2𝐽𝑓+𝑚𝑖+𝑚𝑖′ �
𝐽𝑓 1 𝐽𝑖
𝑚𝑓′ 𝑀 −𝑚𝑖′

� �
𝐽𝑓 1 𝐽𝑖
𝑚𝑓 𝑀 −𝑚𝑖

�
𝑚𝑖𝑚𝑓𝑚𝑖′𝑚𝑓′𝑀

 

× �𝐽𝑓𝑚𝑓�𝑈𝐶−1�𝐽𝑓𝑚𝑓′�⟨𝐽𝑖𝑚𝑖′|𝑈𝐶|𝐽𝑖𝑚𝑖′⟩ 

 

 

 

(2.138) 
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Allard uses spherical symmetry (Allard and Kielkopf, 1982) to claim that if 𝑚𝑓 = 𝑚𝑓′ 

(that is, the final state is the ground state), (2.76d) becomes 

 

 (2𝐽𝑖 + 1) � �
𝐽𝑓 1 𝐽𝑖
𝑚𝑓′ 𝑀 −𝑚𝑖′

� �
𝐽𝑓 1 𝐽𝑖
𝑚𝑓 𝑀 −𝑚𝑖

�
𝑚𝑓′𝑚𝑓𝑀

= 𝛿𝑚𝑖𝑚𝑖′ (2.139) 

 

And (2.138) becomes 

 

 

�1− �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣
�

= 1 −
1

(2𝐽𝑖 + 1) �𝐽𝑓�𝑈𝐶
−1�𝐽𝑓� � (−1)−2(𝐽𝑓+𝑚𝑖)

+𝐽𝑖

𝑚𝑖=−𝐽𝑖

⟨𝐽𝑖𝑚𝑖|𝑈𝐶|𝐽𝑖𝑚𝑖⟩ 
(2.140) 

 

Now, Jf and mi are constrained to be half-integers, so 𝐽𝑓 + 𝑚𝑖 is an integer.  Thus, 

(−1)−2(𝐽𝑓+𝑚𝑖) = 1, and using (2.98a) and (2.98b), 

 

 �1− �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣
� = 1 −

1
(2𝐽𝑖 + 1) 𝑒

𝑖𝛿𝑚𝑓 � 𝑒−𝑖𝛿𝑚𝑖

+𝐽𝑖

𝑚𝑖=−𝐽𝑖

 (2.141) 

 

For the 2P1/2 manifold, Ji = 1/2 and (2.141) becomes 

 

 �1 − �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣
� = 1 −

1
2
𝑒𝑖𝛿𝑓 � 𝑒−𝑖𝛿𝑚𝑖

+12

𝑚𝑖=−
1
2

= 1 − 𝑒𝑖(𝛿𝑓−𝛿𝑖) (2.142a) 
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For the 2P3/2 manifold, Ji = 3/2 and (2.141) becomes 

 

 
�1 − �𝑢𝑓𝑓−1𝑢𝑖𝑖�𝐴𝑛𝑔 𝐴𝑣

� = 1 −
1
4
𝑒𝑖𝛿𝑓 � 𝑒−𝑖𝛿𝑚𝑖

+32

𝑚𝑖=−
3
2

= 1 −
1
2
𝑒𝑖𝛿𝑓 � 𝑒−𝑖𝛿𝑚𝑖

+32

𝑚𝑖=+
1
2

 

= 1 −
1
2
𝑒
𝑖(𝛿𝑓−𝛿𝑖=12

)
−

1
2
𝑒
𝑖(𝛿𝑓−𝛿𝑖=32

)
 

(2.142b) 

 

The Allard-coupled broadening and shift coefficients thus differ from the uncoupled case 

only for the D2 line, which corresponds to transitions from the 2P3/ 2 manifold.  That 

result becomes: 

 

𝑛𝛼1
𝑃

= �
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp �−
𝐸
𝑘𝐵𝑇

�∆𝐸
∞

𝐸=0

 

                                       × � (2𝐽 + 1)[1 −
1
2

cos 𝜃𝑓1
𝐽 (𝐸) −

1
2

cos 𝜃𝑓2
𝐽 (𝐸)]

∞

𝐽=0.5

 

𝑛𝛽1
𝑃

= −�
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp �−
𝐸
𝑘𝐵𝑇

�∆𝐸
∞

𝐸=0

 

                               × � (2𝐽 + 1) �
1
2

sin𝜃𝑓1
𝐽 (𝐸) +

1
2

sin𝜃𝑓2
𝐽 (𝐸)�

∞

𝐽=0.5

 

(2.143a) 

 

 

 

 

(2.143b) 

 

where 𝜃𝑓1
𝐽  and 𝜃𝑓2

𝐽  are the uncoupled scattering phase shift differences corresponding to 

the two states on the 2P3/2 manifold (that is, the 2
3/2A Π  and 2

1/2B Σ  states).  Figs. 2.6a and 

2.6b show the broadening and shift coefficients as functions of temperature for Rb + He 

in the Allard-coupled case. 
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Fig. 2.6a:  Broadening coefficients vs. temperature for Rb + He, Allard-coupled 

 

Fig. 2.6b:  Shift coefficients vs. temperature for Rb + He, Allard-coupled 
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 In the Allard-coupled case, the states in the 2P3/2 manifold are coupled in a 50/50 

split, as shown by the factors of ½ in (2.143a) and (2.143b).  We can modify the coupling 

somewhat, to account for a variable coupling; to do this, we replace the factor of ½ with 

the probability for being in each corresponding state after the collision, which 

corresponds to the square of each state’s corresponding scattering matrix element.  This 

approach stems from the work of Baranger, reflected in equations (2.97) - (2.101b), 

where 𝜁 is nonzero.  The broadening and shift coefficients then become: 

 

 

𝑛𝛼1
𝑃

= �
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp �−
𝐸
𝑘𝐵𝑇

�∆𝐸
∞

𝐸=0

 

                                      × � (2𝐽 + 1)[1 − 𝑄𝑓1
𝐽 cos 𝜃𝑓1

𝐽 (𝐸) − 𝑄𝑓2
𝐽 cos𝜃𝑓2

𝐽 (𝐸)]
∞

𝐽=0.5

 

𝑛𝛽1
𝑃

= −�
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp �−
𝐸
𝑘𝐵𝑇

�∆𝐸
∞

𝐸=0

 

                               × � (2𝐽 + 1)�𝑄𝑓1
𝐽 sin𝜃𝑓1

𝐽 (𝐸) + 𝑄𝑓2
𝐽 sin𝜃𝑓2

𝐽 (𝐸)�
∞

𝐽=0.5

 

(2.144a) 

 

 

 

 

(2.144b) 

 

where 𝑄𝑓1
𝐽 = �𝑆𝑓1

𝐽 (𝐸)�
2

= 𝑒−𝜁𝑓1
𝐽

 and 𝑄𝑓2
𝐽 = �𝑆𝑓2

𝐽 (𝐸)�
2

= 𝑒−𝜁𝑓2
𝐽

 are the normalized squares 

of the scattering matrix elements and 𝑒−𝜁𝑓1
𝐽

 and 𝑒−𝜁𝑓2
𝐽

 are decay coefficients as they 

appear in the form 𝑒−𝜁 in equations (2.101a-b) and 𝑄𝑓1
𝐽 + 𝑄𝑓2

𝐽 = 𝑒−𝜁𝑓1
𝐽

+ 𝑒−𝜁𝑓2
𝐽
≈ 1.  We 

can thus approximate (2.144a-b) in the form: 
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𝑛𝛼1
𝑃

≈ �
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp �−
𝐸
𝑘𝐵𝑇

�∆𝐸
∞

𝐸=0

                           

                      × � (2𝐽 + 1)[𝑄𝑓1
𝐽 �1 − cos 𝜃𝑓1

𝐽 (𝐸)� + 𝑄𝑓2
𝐽 �1 − cos 𝜃𝑓2

𝐽 (𝐸)�]
∞

𝐽=0.5

 

𝑛𝛽1
𝑃

≈ −�
2𝜋
𝜇3

ℏ2(𝑘𝐵𝑇)−5 2⁄ � exp �−
𝐸
𝑘𝐵𝑇

�∆𝐸
∞

𝐸=0

                        

× � (2𝐽 + 1)�𝑄𝑓1
𝐽 sin𝜃𝑓1

𝐽 (𝐸) + 𝑄𝑓2
𝐽 sin𝜃𝑓2

𝐽 (𝐸)�
∞

𝐽=0.5

 

(2.144c) 

 

 

 

 

(2.144d) 

 

Like the Allard-coupled case, the Baranger coupling case does not change the D1 

line results (which depend only on the single state on the 2P1/2 manifold) but changes 

only the D2 line results (which depend on the two states on the 2P3/2 manifold).  Figs. 

2.6c and 2.6d show broadening and shift coefficients as functions of temperature for Rb + 

He in the Baranger coupling case.  Because this form of coupling requires data about the 

behavior of the scattering matrix elements and not just phases, these results cannot be 

extended in the energy regime in the same way as the other cases.  Thus, the broadening 

and shift coefficients must be limited to lower temperatures in order to prevent error due 

to truncation of the Boltzmann distribution at the maximum energy. 
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Fig. 2.6c:  Broadening coefficient vs. temperature for Rb + He, Baranger coupling 

 

Fig. 2.6d:  Shift coefficient vs. temperature for Rb + He, Baranger coupling 
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III.  Research Results 

This chapter analyzes the overall research results.  The primary programming 

language used in writing computer simulations for this research is Fortran 90, with some 

Fortran 77 legacy code used where appropriate, compiled and executed on AFIT’s Linux 

Cluster for the sake of computational efficiency.  Preparation of initial wavepackets and 

analysis of the output data are achieved using Matlab code, executed primarily on a 

Hewlett-Packard P6620F (AMD Phenom II X4 830 quad-core 2.80-GHz processor; 6 GB 

RAM, running 64-bit Windows 7 OS).  Here, we will lay out the results of the research 

and will discuss those results as well as potential limitations in simulation methods and 

theory-experiment interface.  In this section we repeat the calculations of Chapter II for 

the Baranger model for all nine M + Ng pairs in four cases:  (1) uncoupled (integrating 

over Boltzmann-distributed energies), (2) uncoupled using average energy instead of 

integrating over the Boltzmann distribution (solely for comparison with Anderson-

Talman results), (3) Allard coupling (integrating over Boltzmann-distributed energies), 

and (4) Baranger coupling (integrating over Boltzmann-distributed energies). 

For each M + Ng pair, the broadening and shift of the D1 line is plotted for the 

Boltzmann energy distribution (which covers all coupling cases because the D1 line 

includes only the 𝐴2Π1
2�
 state) and the thermal average energy given by (2.135).  Then 

the broadening and shift of the D2 line is plotted for each of the 𝐴2Π3
2�
 and 𝐵2Σ1

2�
 states 

for the Boltzmann energy distribution and the thermal average energy, along with the 

coupled D2 line calculations in the Allard and Baranger coupling cases.  In each case, 

Anderson-Talman results (Blank, in preparation) are plotted from Tables 2.2e-g, and 

experimental results (Pitz, Wertepny, and Perram, 2009; Pitz, Fox, and Perram, 2010) are 

compared.  Then the broadening and shift cross sections are plotted, as calculated in 

(2.137a-b); in the case of Rb + He, these plots are the same as Figs. 2.5m-n but are 

presented in this chapter for completeness. 
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 Additionally, plots are provided which compare the D2 line broadening and shift 

coefficients using the Allard (and Baranger) coupling under different conditions.  The 

Allard-coupled equations (2.143a-b) are assumed in most cases to use the phase shifts 

𝜃𝑓𝑖
𝐽 (𝐸) computed from the uncoupled scattering matrix elements, whereas the Baranger-

coupled equations (2.144a-b) use phase shifts and weights from the fully coupled 

scattering matrix elements.  One can perform the calculations much more quickly using 

the uncoupled scattering matrix elements because the uncoupled scattering matrix 

elements can be calculated in a single run, whereas the coupled scattering matrix 

elements require three runs (one run per input state). 
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3.1. Potassium + Helium (K + He) 

 
Fig. 3.1a:  Broadening coefficients for the D1 line of K + He.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Both the Baranger model and the Anderson-Talman model 
provide excellent connection with experimental result (Lwin and McCartan, 1978). 
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Fig. 3.1b:  Shift coefficients for the D1 line of K + He.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Neither the Baranger model nor the Anderson-Talman model 
provides good connection with experimental result (Lwin and McCartan, 1978). 
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Fig. 3.1c:  Broadening coefficients for the D2 line of K + He.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The two coupling cases track each other for nearly the 
full range of temperatures for which we calculate the Baranger coupling.  Both the 
Baranger model and the Anderson-Talman model provide good connection with 
experimental result (Lwin and McCartan, 1978). 
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Fig. 3.1d:  Shift coefficients for the D2 line of K + He.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The two coupling cases provide good connection with the 
magnitude of the experimental result (Lwin and McCartan, 1978) at 400 K but diverge 
from each other significantly at low temperatures, even predicting opposite shifts. 

 

 

 

 



www.manaraa.com

 

87 
 

 

Fig. 3.1e:  Broadening rates vs. temperature for K + He. 

 

Fig. 3.1f:  Shift rates vs. temperature for K + He. 
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Fig. 3.1g:  Broadening cross sections vs. temperature for K + He. 

 

Fig. 3.1h:  Shift cross sections vs. temperature for K + He. 
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3.2. Potassium + Neon (K + Ne) 

 

Fig. 3.2a:  Broadening coefficients for the D1 line of K + Ne.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides better connection with 
experimental result (Lwin and McCartan, 1978) than the Anderson-Talman model. 
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Fig. 3.2b:  Shift coefficients for the D1 line of K + Ne.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides better connection with 
experimental result (Lwin and McCartan, 1978) than the Anderson-Talman model. 
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Fig. 3.2c:  Broadening for the D2 line of K + Ne.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The two coupling cases track each other for nearly the 
full range of temperatures for which we calculate the Baranger coupling.  Both the 
Baranger model and the Anderson-Talman model provide good connection with 
experimental result (Lwin and McCartan, 1978). 

 



www.manaraa.com

 

92 
 

 

Fig. 3.2d:  Shift coefficients for the D2 line of K + Ne.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Here the Allard coupling provides a closer match with the 
Anderson-Talman model, though neither model provides particularly good connection 
with experimental result (Lwin and McCartan, 1978).  The two coupling cases diverge 
significantly at low temperatures because of the coupling between states during the 
collision process. 
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Fig. 3.2e:  Broadening rates vs. temperature for K + Ne. 

 

Fig. 3.2f:  Shift rates vs. temperature for K + Ne. 
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Fig. 3.2g:  Broadening cross sections vs. temperature for K + Ne. 

 

Fig. 3.2h:  Shift cross sections vs. temperature for K + Ne. 
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3.3. Potassium + Argon (K + Ar) 

 

Fig. 3.3a:  Broadening coefficients for the D1 line of K + Ar.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here both the Baranger model and the Anderson-Talman 
model underestimate the measured broadening rate (Lwin and McCartan, 1978). 
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Fig. 3.3b:  Shift coefficients for the D1 line of K + Ar.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here both the Baranger model and the Anderson-Talman 
model underestimate the measured line shift rate (Lwin and McCartan, 1978). 
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Fig. 3.3c:  Broadening coefficients for the D2 line of K + Ar.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The two coupling cases appear to track each other for 
nearly the full range of temperatures for which we calculate the Baranger coupling.  The 
Baranger model and Anderson-Talman models predict similar results, but both models 
underestimate the measured broadening rate (Lwin and McCartan, 1978). 
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Fig. 3.3d:  Shift coefficients for the D2 line of K + Ar.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model underestimate the measured line shift rate (Lwin and McCartan, 1978). 
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Fig. 3.3e:  Broadening rates vs. temperature for K + Ar. 

 

Fig. 3.3f:  Shift rates vs. temperature for K + Ar. 
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Fig. 3.3g:  Broadening cross sections vs. temperature for K + Ar. 

 

Fig. 3.3h:  Shift cross sections vs. temperature for K + Ar. 
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3.4. Rubidium + Helium (Rb + He) 

 

Fig. 3.4a:  Broadening coefficients for the D1 line of Rb + He.  The dashed line 
represents Baranger model calculations at the thermal average energy for each 
temperature.  The solid line represents Baranger model calculations using the Boltzmann 
distribution and represents our best results.  Here the Baranger model provides a good 
prediction of measured broadening rates (Kazantsev, Kaliteevskii, and Rish, 1978; 
Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; Rotondaro and Perram, 1997). 
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Fig. 3.4b:  Shift coefficients for the D1 line of Rb + He.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides a poor prediction of 
measured shift rates (Kazantsev, Kaliteevskii, and Rish, 1978; Izotova, Kantserov, and 
Frish, 1981; Rotondaro, 1995; Rotondaro and Perram, 1997), perhaps getting the number 
right but predicting redshifting where experimental results show blueshifting.  The 
Anderson-Talman model seems to provide better predictions. 
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Fig. 3.4c:  Broadening coefficients for the D2 line of Rb + He.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide excellent predictions of measured broadening rates (Belov, 
1981a, 1981b; Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; Rotondaro and 
Perram, 1997). 
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Fig. 3.4d:  Shift coefficients for the D2 line of Rb + He.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Allard coupling scheme and the Anderson-
Talman model appear to provide excellent predictions of measured shift rates (Belov, 
1981a, 1981b; Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; Rotondaro and 
Perram, 1997), but the Baranger coupling model predicts the opposite shift. 
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Fig. 3.4e:  Broadening rates vs. temperature for Rb + He. 

 

Fig. 3.4f:  Shift rates vs. temperature for Rb + He. 
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Fig. 3.4g:  Broadening cross sections vs. temperature for Rb + He. 

 

Fig. 3.4h:  Shift cross sections vs. temperature for Rb + He. 
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3.5. Rubidium + Neon (Rb + Ne) 

 

Fig. 3.5a:  Broadening coefficients for the D1 line of Rb + Ne.  The dashed line 
represents Baranger model calculations at the thermal average energy for each 
temperature.  The solid line represents Baranger model calculations using the Boltzmann 
distribution and represents our best results.  Here the Baranger model provides a good 
prediction of measured broadening rates (Kazantsev, Kaliteevskii, and Rish, 1978; 
Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; Rotondaro and Perram, 1997) and 
performs somewhat better than the Anderson-Talman model. 
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Fig. 3.5b:  Shift coefficients for the D1 line of Rb + Ne.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides excellent predictions of 
measured shift rates (Kazantsev, Kaliteevskii, and Rish, 1978; Izotova, Kantserov, and 
Frish, 1981; Rotondaro, 1995; Rotondaro and Perram, 1997). 
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Fig. 3.5c:  Broadening coefficients for the D2 line of Rb + Ne.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide excellent predictions of measured broadening rates (Belov, 
1981a, 1981b; Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; Rotondaro and 
Perram, 1997). 
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Fig. 3.5d:  Shift coefficients for the D2 line of Rb + Ne.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The Baranger model appears to provide good predictions 
of measured shift rates (Belov, 1981a, 1981b; Izotova, Kantserov, and Frish, 1981; 
Rotondaro, 1995; Rotondaro and Perram, 1997), although the Baranger coupling scheme 
comes closer to experimental results than does the Allard coupling scheme. 
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Fig. 3.5e:  Broadening rates vs. temperature for Rb + Ne. 

 

Fig. 3.5f:  Shift rates vs. temperature for Rb + Ne. 
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Fig. 3.5g:  Broadening cross sections vs. temperature for Rb + Ne. 

 

Fig. 3.5h:  Shift cross sections vs. temperature for Rb + Ne. 
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3.6. Rubidium + Argon (Rb + Ar) 

 

Fig. 3.6a:  Broadening coefficients for the D1 line of Rb + Ar.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here both the Baranger model and the Anderson-Talman 
model provide terrible predictions of measured broadening rates (Kazantsev, 
Kaliteevskii, and Rish, 1978; Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; 
Rotondaro and Perram, 1997). 
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Fig. 3.6b:  Shift coefficients for the D1 line of Rb + Ar.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides fair predictions of 
measured shift rates (Kazantsev, Kaliteevskii, and Rish, 1978; Izotova, Kantserov, and 
Frish, 1981; Rotondaro, 1995; Rotondaro and Perram, 1997). 
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Fig. 3.6c:  Broadening coefficients for the D2 line of Rb + Ar.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide poor predictions of measured broadening rates (Belov, 1981a, 
1981b; Izotova, Kantserov, and Frish, 1981; Rotondaro, 1995; Rotondaro and Perram, 
1997). 

 



www.manaraa.com

 

116 
 

 

Fig. 3.6d:  Shift coefficients for the D2 line of Rb + Ar.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The Baranger model provides good predictions of 
measured shift rates in this case (Belov, 1981a, 1981b; Izotova, Kantserov, and Frish, 
1981; Rotondaro, 1995; Rotondaro and Perram, 1997). 

 

 

 

 



www.manaraa.com

 

117 
 

 

Fig. 3.6e:  Broadening rates vs. temperature for Rb + Ar. 

 

Fig. 3.6f:  Shift rates vs. temperature for Rb + Ar. 
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Fig. 3.6g:  Broadening cross sections vs. temperature for Rb + Ar. 

 

Fig. 3.6h:  Shift cross sections vs. temperature for Rb + Ar. 
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3.7. Cesium + Helium (Cs + He) 

 

Fig. 3.7a:  Broadening coefficients for the D1 line of Cs + He.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides some good predictions of 
measured broadening rates at T = 295 K (Bernabeu, 1980), at T = 323 K (Pitz, Wertepny, 
and Perram, 2009; Pitz, 2010), and at T = 393K (Couture, Clegg, and Drieguys, 2008). 
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Fig. 3.7b:  Shift coefficients for the D1 line of Cs + He.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides fair predictions of 
measured shift rates at T = 295 K (Bernabeu, 1980), at T = 323 K (Pitz, Wertepny, and 
Perram, 2009; Pitz, 2010), and at T = 393K (Couture, Clegg, and Drieguys, 2008). 
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Fig. 3.7c:  Broadening coefficients for the D2 line of Cs + He.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide good predictions of measured broadening rates at T = 295 K 
(Bernabeu, 1980), at T = 313 K (Pitz, 2010; Pitz, Fox, and Perram, 2010), and at T = 
393K (Couture, Clegg, and Drieguys, 2008). 
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Fig. 3.7d:  Shift coefficients for the D2 line of Cs + He.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide fair predictions of measured shift rates at T = 295 K (Bernabeu, 
1980), at T = 313 K (Pitz, 2010; Pitz, Fox, and Perram, 2010), and at T = 393K (Couture, 
Clegg, and Drieguys, 2008), though the Allard coupling scheme appears to perform better 
than the Baranger coupling scheme in this case. 
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Fig. 3.7e:  Broadening rates vs. temperature for Cs + He. 

 

Fig. 3.7f:  Shift rates vs. temperature for Cs + He. 



www.manaraa.com

 

124 
 

 

Fig. 3.7g:  Broadening cross sections vs. temperature for Cs + He. 

 

Fig. 3.7h:  Shift cross sections vs. temperature for Cs + He. 
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3.8. Cesium + Neon (Cs + Ne) 

 

Fig. 3.8a:  Broadening coefficients for the D1 line of Cs + Ne.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here the Baranger model provides excellent predictions of 
measured broadening rates (Bernabeu, 1980; Couture, Clegg, and Drieguys, 2008; Pitz, 
Wertepny, and Perram, 2009; Pitz, 2010; Pitz, Fox, and Perram, 2010). 

 



www.manaraa.com

 

126 
 

 

Fig. 3.8b:  Shift coefficients for the D1 line of Cs + Ne.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here Baranger model provides fair predictions of measured 
shift rates (Bernabeu, 1980; Couture, Clegg, and Drieguys, 2008; Pitz, Wertepny, and 
Perram, 2009; Pitz, 2010; Pitz, Fox, and Perram, 2010). 
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Fig. 3.8c:  Broadening coefficients for the D2 line of Cs + Ne.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide fair predictions of measured broadening rates (Bernabeu, 1980; 
Couture, Clegg, and Drieguys, 2008; Pitz, Wertepny, and Perram, 2009; Pitz, 2010; Pitz, 
Fox, and Perram, 2010). 
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Fig. 3.8d:  Shift coefficients for the D2 line of Cs + Ne.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide poor predictions of measured shift rates (Bernabeu, 1980; 
Couture, Clegg, and Drieguys, 2008; Pitz, Wertepny, and Perram, 2009; Pitz, 2010; Pitz, 
Fox, and Perram, 2010).  The Baranger coupling scheme appears to predict the opposite 
shift from experiment. 
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Fig. 3.8e:  Broadening rates vs. temperature for Cs + Ne. 

 

Fig. 3.8f:  Shift rates vs. temperature for Cs + Ne. 
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Fig. 3.8g:  Broadening cross sections vs. temperature for Cs + Ne. 

 

Fig. 3.8h:  Shift cross sections vs. temperature for Cs + Ne. 
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3.9. Cesium + Argon (Cs + Ar) 

 

Fig. 3.9a:  Broadening coefficients for the D1 line of Cs + Ar.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here both the Baranger model and the Anderson-Talman 
model provides terrible predictions of measured broadening rates (Bernabeu, 1980; 
Couture, Clegg, and Drieguys, 2008; Pitz, Wertepny, and Perram, 2009; Pitz, 2010; Pitz, 
Fox, and Perram, 2010). 
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Fig. 3.9b:  Shift coefficients for the D1 line of Cs + Ar.  The dashed line represents 
Baranger model calculations at the thermal average energy for each temperature.  The 
solid line represents Baranger model calculations using the Boltzmann distribution and 
represents our best results.  Here both the Baranger model and the Anderson-Talman 
model provides terrible predictions of measured shift rates (Bernabeu, 1980; Couture, 
Clegg, and Drieguys, 2008; Pitz, Wertepny, and Perram, 2009; Pitz, 2010; Pitz, Fox, and 
Perram, 2010). 
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Fig. 3.9c:  Broadening coefficients for the D2 line of Cs + Ar.  Red and blue indicate 
results for calculations on the individual surfaces, while black indicates results on the D2 
line (Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  The two coupling cases may converge only at very high 
temperatures (at least 700 K), though we cannot predict the Baranger coupling results at 
temperatures above 500 K with certainty.  Both the Baranger model and the Anderson-
Talman model appear to provide poor predictions of measured broadening rates 
(Bernabeu, 1980; Couture, Clegg, and Drieguys, 2008; Pitz, Wertepny, and Perram, 
2009; Pitz, 2010; Pitz, Fox, and Perram, 2010). 
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Fig. 3.9d:  Shift coefficients for the D2 line of Cs + Ar.  Red and blue indicate results for 
calculations on the individual surfaces, while black indicates results on the D2 line 
(Anderson-Talman by taking an average of the red and blue results, Baranger by 
calculating a coupled case).  The black dashed line represents Baranger model 
calculations using the Allard coupling (50/50 weighting with uncoupled phase shifts).  
The black solid line represents Baranger model calculations using the Baranger coupling 
(weightings and phase shifts determined by the fully coupled scattering matrix elements) 
and represents our best results.  Both the Baranger model and the Anderson-Talman 
model appear to provide poor predictions of measured shift rates (Bernabeu, 1980; 
Couture, Clegg, and Drieguys, 2008; Pitz, Wertepny, and Perram, 2009; Pitz, 2010; Pitz, 
Fox, and Perram, 2010). 
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Fig. 3.9e:  Broadening rates vs. temperature for Cs + Ar. 

 

Fig. 3.9f:  Shift rates vs. temperature for Cs + Ar. 
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Fig. 3.9g:  Broadening cross sections vs. temperature for Cs + Ar. 

 

Fig. 3.9h:  Shift cross sections vs. temperature for Cs + Ar. 



www.manaraa.com

 

137 
 

3.10 Discussion 

 

3.10.1 Boltzmann distribution of energies versus thermal average energy 

 In section 2.5, we discussed one of the limitations of the Anderson-Talman 

model, the assumption that all collisions would have the same relative speed, 

corresponding to the thermal average kinetic energy for the temperature being 

considered.  In order to provide a point of comparison with the Anderson-Talman model, 

we have calculated the broadening and shift coefficients by equations (2.136a-b), which 

replace the Boltzmann distribution with the thermal average energy.  The results for the 

Baranger model using the thermal average energy do not closely match the Anderson-

Talman model for any of the lines for the M + Ng pairs considered.  This would seem to 

represent a fundamental dependence of the Anderson-Talman model on using the thermal 

average speed in a way that is not exhibited by the Baranger model.  In particular, using 

the thermal average energy tends to result in an underestimate of the broadening rate 

because such a calculation requires one to take a constant-energy slice (or cross-section) 

of the phase shift differences. 

 

3.10.2 Sources of error 

 There are several potential sources of error in this research.  Since this is a piece 

of a larger whole of research, it is dependent on the work that has come before.  The 

Baranger model represents the foundation for this research and its construction from first 

principles.  The inputs into the model are the scattering matrix elements, which are 

generated from the potential energy surfaces; any error in the ab initio potentials is 

reflected in the final results.  It is possible that the implementation of the model is flawed 

in some way, but the work of Lewis on calculating scattering cross-sections (Lewis, 

2011) indicates a solid footing on the generation of scattering matrix elements and the 

expression of the Hamiltonian for the system. 
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Because there is numerical noise in the scattering matrix elements at low energies 

(see Fig. 2.4d) associated with the division of the Fourier transform of the correlation 

function by the initial Moller states (see equation (2.122)), where both quantities are 

small at low energies, we might expect there to be some noise in the phase shifts and in 

the scattering phase shift differences as well.  In some cases, especially in the uncoupled 

(diagonal Hamiltonian) cases, the noise is relatively minor. 

 

 

Fig. 3.10.2a:  Scattering phase shift difference for the 𝐴2Π1
2�
 state of the uncoupled case 

of Rb + He, side view (left) and top-down view (right).  The random spikes along the low 
energy edge are caused by noise in the scattering matrix elements at low energies.  The 
spikes become more common at higher values of J, which reflects greater influence of the 
centrifugal effective potential on the reactant Moller states at high J. 

 

 In other cases, however, the noise is significant and must be filtered in order to 

get a reasonable result from the signal.  For example, since the intermediate Moller states 

are generated by propagating a Gaussian wavepacket to the same time before the 

collision, we expect that the more massive M + Ng pairs do not propagate as far apart 

during this process, and thus it is more likely that the intermediate Moller states for those 

more massive pairs will overlap with the centrifugal effective potential in a significant 

way (see Fig. 2.4a). 
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Fig. 3.10.2b:  Scattering phase shift difference for the 𝐴2Π3
2�
 state of the uncoupled case 

of Rb + Ar, side view (left) and top-down view (right).  A significant “shelf” appears at 
the low-energy edge of the plot because of overlap between the intermediate Moller 
states and the centrifugal effective potential. 

 

 We have three significant sources of error in our scattering phase shift 

differences, which will be shown in Fig. 3.10.2c.  First, we are limited at low energies by 

the calculation of the scattering matrix elements in (2.122): 

 

 𝑆 =
(2𝜋)−1[|𝑘′||𝑘|]1/2

𝜂−∗ 𝜂+
� 𝑑𝑡 exp (

𝑖𝐻𝑡
ℏ

)𝐶(𝑡)
∞

−∞
 (2.122) 

 

As the energy approaches zero, so do both the numerator and denominator in (2.122), 

resulting in significant noise as the value of the fraction bounces back and forth.  This 

gives rise to the “shelf” in Fig. 3.10.2b and the low-energy part of Fig. 3.10.2c. 
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Fig. 3.10.2c:  Scattering phase shift difference for the 𝐴2Π3
2�
 state, at 400.5J = , in the 

coupled case of Rb + Ar, before filtering.  The “shelf” that appears at the low-energy 
edge of Fig. 3.10.2b can be seen at the left end of this plot and is caused by “divide by 
zero error”.  An overall phase difference offset is a computational artifact created by the 
choice of a nonzero phase at J = 0.5, E = 0 and represents the separation of the medium-
energy portion of this plot from zero phase difference.  A third source of error (at higher 
energies) is caused by Moller state limitations. 

 

 A second source of error occurs from a computational choice of overall phase 

offset.  Recall, from (2.115), that we have defined the scattering operator in terms of 

reactant and product states: 

 |Ψ𝑜𝑢𝑡⟩ = 𝑆̂ |Ψ𝑖𝑛� (2.115) 
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Our only rigorous requirements are that 𝑆̂ be unitary (that is, 𝑆̂−1 = 𝑆̂†) and time-

independent and contain all of the information about the interaction potential (Tannor and 

Weeks, 1992; Weeks and Tannor, 1993).  We can therefore phase 𝑆̂ by an arbitrary 

overall phase without loss of generality: 

 𝑆̂′ = 𝑆̂𝑒𝑖𝜙    (3.1) 

 

which also satisfies (2.115).  Physically, there is no reason to expect a nonzero phase 

offset.  However, our phase-counting algorithm does not restrict the initial phase, so we 

must account for this phase offset at the end of the calculation of the phase differences.  

Essentially, the ability to offset the overall phase in (3.1) requires a boundary condition 

that the overall phase offset be returned to zero. 

 Our third source of error is significant only in the heavier M + Ng pairs, and 

stems from limitations in the Moller states.  In order to propagate a system with a heavier 

reduced mass, our wavepacket requires a larger momentum.  For the heavier masses, the 

wavepacket takes up the full grid in momentum space; any excess overlaps to the 

opposite side of the grid.  This effect is relatively minor at all but the highest energies and 

the heaviest M + Ng pairs, as we see in Fig. 3.10.2d for Rb + Ng, and it is the best 

balance we can reach with the propagation grid we have selected. 

 Another potential source of error is that the generation of the reactant Moller 

states does not include the off-diagonal Coriolis terms for the Hamiltonian in (2.132), but 

include only the diagonal terms (that is, the centrifugal effective potential).  In a manner 

similar to Fig. 2.4a, we show the reactant Moller states (at t = 0) and both the diagonal 

and off-diagonal Coriolis terms plotted in Figs. 3.10.2e-g.  As we can see from these 

plots, however, the off-diagonal Coriolis terms do not contribute significantly to the 

Hamiltonian at separations as far as where we start the propagation (100 Bohr), and thus 

ignoring the off-diagonal Coriolis terms should not introduce a significant source of 

error. 
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Fig. 3.10.2d:  Intermediate Moller state in the momentum representation, for Rb + He 
(top), Rb + Ne (middle), and Rb + Ar (bottom).  There is some leakage of the wavepacket 
into right-hand side of the grid for Rb + Ar that is a small source of error at high energy. 
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Fig. 3.10.2e:  Reactant Moller states (left) and an expanded view of the reactant Moller 
states and Coriolis terms plotted (right) for K + He (top), K + Ne (middle), and K + Ar 
(bottom). 
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Fig. 3.10.2f:  Reactant Moller states (left) and an expanded view of the reactant Moller 
states and Coriolis terms plotted (right) for Rb + He (top), Rb + Ne (middle), and Rb + 
Ar (bottom). 
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Fig. 3.10.2g:  Reactant Moller states (left) and an expanded view of the reactant Moller 
states and Coriolis terms plotted (right) for Cs + He (top), Cs + Ne (middle), and Cs + Ar 
(bottom). 
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 We filter out the errors in the phase differences by zeroing out the scattering 

phase shift difference (plotted in Figs. 3.10.2a-b) in the region in question.  We define a 

shallow 2J  function by defining the 2J  function at maxJ J= , just high enough to get as 

much of the “shelf” (see Fig. 3.10.2b) as possible with as little impact as possible on the 

collision process.  Below the 2J  function we define the scattering phase shift difference 

to be zero; since we expect no difference in phase shift to occur in this region, such a 

process has no effect on the physics of the collision process.  Next, we subtract the 

remainder of the phase difference versus energy data at maxJ  from the data for all other J.  

This has the dual effect of resetting the overall phase offset to zero and removing the 

Moller state limitation errors, thus removing our second and third sources of error in the 

phase differences.  All of the results in this dissertation apply these two filtering features 

as well as a J-to-J smoothing that adds or subtracts multiples of 2π  from the scattering 

phase shift difference as necessary to bring each J within 2π  of the previous J.  

Multiples of 2π  have no effect on the subsequent calculations, since they are based on 

the sine or cosine of the scattering phase shift difference. 

 The shift coefficients are extremely sensitive to the initial Moller reactant states.  

This sensitivity is caused by the sine term in (2.110b); for small phase shift differences, 

sin𝜃𝐽(𝐸) ≈ 𝜃𝐽(𝐸) but cos 𝜃𝐽(𝐸) ≈ 1, so small but nonzero phase shift differences cause 

the integrand in (2.110a) to vanish but the integrand (2.110b) to remain nonzero.  This 

nonvanishing term then multiplies the Boltzmann distribution and causes a J-independent 

ridge.  Such a ridge appears for any nonzero offset phase as well, but a small but nonzero 

phase shift difference appears if the Moller reactant state generation has not propagated 

far enough into the distant past to escape the centrifugal effective potential (see Fig. 2.4a 

for details).  Fig. 3.10.2a shows the sensitivity of the sine term to small phase shifts 

resulting from inadequate Moller reactant states. 
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Fig. 3.10.2h:  sin𝜃𝐽(𝐸) × Boltzmann distribution for the 𝐴2Π1
2�
 state of the uncoupled 

case of Cs + Ar, at T = 394 K, side view (left) and top-down view (right).  An early 
attempt (top) at generating the Moller states proved not to propagate far enough into the 
distant past.  The latest run (bottom) propagates twice as far.  Note that there are 
differences in scale between the runs.  The feature appearing across the low-energy edge 
of the early run (top) is caused by the Moller state issue.  Moller states in both data sets 
satisfied all the needs of the work of Lewis (Lewis, 2011), but give wholly inadequate 
scattering phase shift differences. 

 

 To calculate the phase shift differences in Fig. 2.5d, phase shifts for the excited 

and ground states were extended linearly from the energy limits of our calculations (E = 

0.0075 Hartree) to a larger energy (E = 0.012 Hartree) in order to accommodate 

calculations at higher temperatures.  As we see from Figs. 2.5f and 2.5h, incorporating 

higher energy collisions to go to higher temperatures also requires us to include higher 
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values of J.  For example, the entire collision phase space in Fig. 2.5h at T = 100 K (top 

of Fig. 2.5h) can be handled with maximum energy of 0.002 Hartree and maximum J = 

65.5.  Increasing the temperature to T = 394 K (middle of Fig. 2.5h) requires us to 

consider energies up to 0.007 Hartree and a maximum J = 110.5 to catch the entire 

collision phase space.  Increasing the temperature to T = 800 K (bottom of Fig. 2.5h) 

requires a maximum E = 0.012 Hartree and J = 130.5 to capture the entire collision phase 

space.  In other words, calculating at higher temperatures requires larger energies and 

larger values of J.  We can extend phase shifts linearly in energy, but we cannot extend in 

J without losing critical information about that part of the collision phase space.  

Calculations at significantly higher temperatures will require calculations at higher values 

of J to capture the full collision process.  Such work will be necessary to perform 

broadening and shift calculations at higher temperatures than about 800 K. 

 

3.10.3 Allard coupling versus Baranger coupling 

 As discussed in the introduction to Chapter III, we have calculated the D2 line 

broadening and shift coefficients using the Allard and Baranger couplings under different 

conditions.  The Allard-coupled equations (2.143a-b) are assumed in most cases to use 

the phase shifts 𝜃𝑓𝑖
𝐽 (𝐸) computed from the uncoupled scattering matrix elements.  This 

allows us to perform the calculations much more quickly because the entire set of 

uncoupled scattering matrix elements can be calculated in a single run, whereas the 

coupled scattering matrix elements require three runs (one run per input state).  The 

Allard-coupled equations also assume a 50/50 weighting of the two states on the 2P3/2 

manifold (that is, the 2
3/2A Π  and 2

1/2B Σ  states), as shown by the factor of ½ in front of 

each cos term in (2.143a) and each sin term in (2.143b).  The Baranger coupling requires 

the coupled scattering matrix elements to be calculated because of the 𝑄𝑓𝑖
𝐽  in (2.144a-b), 

and the phase shifts 𝜃𝑓𝑖
𝐽 (𝐸) that appear in (2.144a-b) are those from the fully coupled 

scattering matrix elements.  The Baranger-coupled equations do not assume a 50/50 

weighting but are weighted according to the reflection probability amplitudes (that is, the 
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probability of the system exiting the collision on the same potential energy surface on 

which it entered the collision).  The Allard coupling seems to give a good approximation 

in many cases to the full coupling of Baranger, at a significant increase in computational 

efficiency.  The Allard coupling does not track the Baranger coupling perfectly, 

especially in some cases at lower temperatures, because the two coupling schemes use 

different phase difference data.  The Allard coupling scheme uses the uncoupled phase 

differences while the Baranger coupling scheme uses the fully coupled (3x3 Hamiltonian) 

phase differences, so even if the weighting were the same we could not necessarily 

expect the same broadening and shift coefficients because we are integrating over 

different phase differences, as we can see in Figs. 3.10.3a-b. 

One further reason to consider the Allard coupling is its ability to make 

predictions at higher temperatures than the Baranger coupling.  As we see in Fig. 3.10.3c, 

the Boltzmann distribution requires us to integrate over higher energies if we wish to 

calculate broadening and shift coefficients at higher temperatures without error because 

the maximum energy used in our integration process is the energy at which we truncate 

the Boltzmann distribution.  The Allard coupling requires only phase differences at 

higher temperatures, and we can extrapolate the phase shifts to higher energies than we 

have rigorously calculated as outlined in section 2.5.  The Baranger coupling requires that 

we have rigorously calculated all of the scattering matrix elements for all energies 

concerned because we need the scattering matrix elements (and not just the phases) to 

calculate the weighting coefficients in equations (2.144a-b), so we are limited in the 

Baranger coupling to a maximum energy of Emax = 0.0075 Hartree.  When we calculate 

broadening and shift coefficients, we truncate the Boltzmann distribution at the maximum 

energy considered, so we introduce an error, as shown in Fig. 3.10.3d.  For example, we 

introduce a 2% truncation error at T = 500 K, but this error grows to 12% if we attempt to 

calculate at T = 800 K.  These truncation errors represent potential bounds of error but 

tend to overestimate the error because the phase shift differences oscillate.  We have 

limited our calculations to T = 500 K for the Baranger-coupled D2 line and T = 800 K for 

the Allard-coupled D2 line because these limits show approximately the same level of 

truncation error (Fig. 3.10.3d). 
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Fig. 3.10.3a:  �1 − cos𝜃𝐽(𝐸)� × Boltzmann distribution for the 3 1,2 2   state of the 

uncoupled case (left) and the fully-coupled 3x3 case (right) of Cs + He at T = 100 K 
(top), 300 K (middle), and 500 K (bottom). 
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Fig. 3.10.3b:  �1 − cos 𝜃𝐽(𝐸)� × Boltzmann distribution for the 3 1,2 2   state of the 

uncoupled case (left) and the fully-coupled 3x3 case (right) of Cs + He at T = 100 K 

(top), 300 K (middle), and 500 K (bottom), top-down view. 
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Fig. 3.10.3c:  Boltzmann distribution at T = 500 K (top) and T = 800 K (bottom), for 
energies from E = 0 to E = 0.0075 Hartree.  Note that at higher temperatures we truncate 
more of the total distribution if we stop integrating at E = 0.0075 Hartree. 
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Fig. 3.10.3d:  Integrated Boltzmann distribution cut off versus temperature.  The top and 
bottom graphs are the same data, except for the vertical scale, from 0 to 1 (top) and from 
0.7 to 1.0 to provide a clearer view of both lines (bottom).  At each temperature, the 
Boltzmann distribution (normalized to 1) has been integrated from E = 0 only to Emax = 
0.0075 Hartree (solid line) or Emax = 0.012 Hartree (dashed-dotted line).  The value on 
the vertical axis is the portion of the Boltzmann distribution retained out to those 
maximum energies.  We have rigorously calculated data out to E = 0.0075 Hartree, so the 
solid line represents our confidence that we have not truncated crucial parts of the 
collision.  For Emax = 0.012 Hartree, we introduce only about a 2% truncation error at T = 
800K, but we reach this level of truncation error at only T = 500 K for Emax = 0.0075 
Hartree. 
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IV.  Conclusions 

 This dissertation began with an overview of collisional line broadening, from 

quantum physics and spectroscopy to the Anderson-Talman model and the Baranger 

model which are the standards for this field.  We then outlined the dissertation research 

methodology to include a detailed description of the simulation process.  The primary 

programming language used in writing computer simulations for this research is Fortran 

90, with some Fortran 77 legacy code used where appropriate, compiled and executed on 

AFIT’s Linux Cluster and on supercomputers run by the DoD High Performance 

Computing Modernization Program, for the sake of computational efficiency.  

Preparation of initial wavepackets and analysis of the output data were achieved using 

Matlab code. 

This research exhibits several new features which set it apart from the current 

state of the field.  First, the full ab initio potential energy surfaces are used; these 

potential energy surfaces have been calculated through many-body calculations by Blank 

(Blank, Weeks, and Kedziora, 2012).  Second, collisions are treated quantum-

mechanically and adiabatically and include spin-orbit and Coriolis coupling.  Third, 

calculations are made with no approximations beyond those of the impact limit aside 

from the limits imposed by the Boltzmann (thermal) distribution of energies. 

 

4.1 Summary of Results 

 The primary goal of this research has been to compare the results of different 

models for calculating the broadening and shift coefficients.  We use the experimental 

results as a guide for interpreting results, but comparison with experiment is not the 

primary goal.  Here, most of our comparisons are between the Baranger model (in some 

cases, analyzing both the Allard and Baranger coupling schemes) and the Anderson-
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Talman model as calculated by Blank, who uses the same ab initio potential energy 

surfaces.  Allard and Kielkopf have identified such a comparison as a necessary step in 

the theoretical process; they claim to await “new experimental results, improved 

potentials, and a comparison of quantal and semiclassical line shapes from the same 

potentials” (Allard, et al, 2007). 

 We can take a closer look at the shift coefficients calculated in this model.  At a 

glance, we would expect a difference potential well to give rise to a redshift (that is, a 

negative shift coefficient) and a difference potential barrier to give rise to a blueshift (that 

is, a positive shift coefficient).  In all cases, our 2 2
1/2 1/2A XΠ − Σ  difference potentials are 

wells (with small barriers around 10-12 Bohr that are slightly larger for heavier alkali), 

our 2 2
3/2 1/2A XΠ − Σ  difference potentials are wells, and our 2 2

1/2 1/2B XΣ − Σ  difference 

potentials are barriers.  Tables 4.1a-b show the results for experiment and each method of 

calculation, in terms of whether each spectral line is redshifted or blueshifted. 

In most cases, the Baranger model predicts a D1 line shift direction that 

corresponds to the well in the 2 2
1/2 1/2A XΠ − Σ  difference potential.  Exceptions occur in 

Cs + Ng, where the small barrier is more pronounced in the difference potential.  The D1 

line shift direction corresponds with measured data in only five of the nine cases:  K + 

Ne, Ar, Rb + Ne, Ar, and Cs + He.  For the others, the Baranger model predicts the 

opposite shift direction.  Similar trends appear in the D2 line shift predictions. 
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Table 4.1a:  Shift direction for experiment and each model for the D1 line at temperatures 
at which data are measured.  Red text indicates redshift (negative coefficient) and blue 
text indicates blueshift (positive coefficient).  The color of the “Well” or “Barrier” text 
indicates the direction of shift we expect given the difference potential. 

D1 line He Ne Ar 

K 

Well (slight barrier 
at 12.5 Bohr) 

(experiment D1) 
(Mullamphy D1) 

Anderson-Talman 
Baranger model 

Well (slight barrier 
at 12.0 Bohr) 

(experiment D1) 
 

Anderson-Talman 
Baranger model 

Well (slight barrier 
at 12.5 Bohr) 

(experiment D1) 
 

Anderson-Talman 
Baranger model 

Rb 

Well (small barrier 
at 11.5 Bohr) 

(experiment D1) 
Anderson-Talman 
Baranger model 

Well (small barrier 
at 11.0 Bohr) 

(experiment D1) 
Anderson-Talman 
Baranger model 

Well (small barrier 
at 11.8 Bohr) 

(experiment D1) 
Anderson-Talman 
Baranger model 

Cs 

Well (moderate 
barrier at 11.2 Bohr) 

(experiment D1) 
Anderson-Talman 
Baranger model 

Well (moderate 
barrier at 10.7 Bohr) 

(experiment D1) 
Anderson-Talman 
Baranger model 

Well (moderate 
barrier at 11.4 Bohr) 

(experiment D1) 
Anderson-Talman 
Baranger model 

 
 

Table 4.1b:  Shift direction for experiment and each model for the D2 line at temperatures 
at which data are measured.  Red text indicates redshift (negative coefficient) and blue 
text indicates blueshift (positive coefficient).  The color of the “Well” or “Barrier” text 
indicates the direction of shift we expect given the difference potential.  In all cases, the 

2 2
3/2 1/2A XΠ − Σ  difference potential is a well and the 2 2

1/2 1/2B XΣ − Σ  a barrier. 

D2 line He Ne Ar 

K 

 (experiment D2) 
(Mullamphy D2) 

Anderson-Talman 
Allard coupling 

Baranger coupling 

 (experiment D2)  
 

Anderson-Talman 
Allard coupling 

Baranger coupling 

 (experiment D2) 
 

Anderson-Talman 
Allard coupling 

Baranger coupling 

Rb 

 (experiment D2)  
Anderson-Talman 

Allard coupling 
Baranger coupling 

 (experiment D2)  
Anderson-Talman 

Allard coupling 
Baranger coupling 

 (experiment D2)  
Anderson-Talman 

Allard coupling 
Baranger coupling 

Cs 

 (experiment D2)  
Anderson-Talman 

Allard coupling 
Baranger coupling 

 (experiment D2)  
Anderson-Talman 

Allard coupling 
Baranger coupling 

 (experiment D2)  
Anderson-Talman 

Allard coupling 
Baranger coupling 



www.manaraa.com

 

157 
 

 Mullamphy, et al (Mullamphy, et al, 2007; Peach, et al, 2009), seem to be 

working with ab initio difference potentials that are based on Lennard-Jones (6-12) 

potentials and appear to be longer-ranged (with significant features out to around 20 

Bohr) than our ab initio potentials for K + He.  The Mullamphy group appears to have 

difference potential wells for all three excited state surfaces but blueshifts for both the D1 

and D2 lines.  It may be, however, that the collisions are probing far enough inward on 

Mullamphy’s difference potentials to reach the much-larger barriers on all three surfaces 

(around 18 Bohr for the 2 2
1/2 1/2B XΣ − Σ  difference potential, around 7 Bohr for the 

2 2
3/2 1/2A XΠ − Σ  difference potential, and around 12 Bohr for the 2 2

1/2 1/2A XΠ − Σ  

difference potential).  This indicates that, for most collision processes under 

Mullamphy’s difference potentials, the D2 line will be dominated by the 2 2
1/2 1/2B XΣ − Σ  

difference potential barrier, and that both the D1 and D2 lines will be blueshifted because 

of the large barriers and not the smaller wells.  In particular, Mullamphy claims, “The 

shifts are quite sensitive to the precise details of the potentials as they are produced by a 

balance between the effects of the long-range attractive potential and the short-range 

repulsive potential. In particular, for a given energy they are sensitive to where the 

repulsive wall is located” (Mullamphy, et al, 2007).  With the exception of the D1 line 

shift, Mullamphy’s predictions, Blank’s Anderson-Talman model calculations, and our 

Baranger model calculations are quite close to each other for K + He.  In the case of the 

D1 line shift, Mullamphy’s predictions are closer to the measured data. 

 In general, our Baranger model calculations provide good predictions of measured 

broadening rates and fair predictions of measured shift rates.  However, we find poor 

predictions of the broadening and shift rates for M + Ar.  Since our Baranger results are 

close to Blank’s Anderson-Talman results for the same ab initio potential energy 

surfaces, we conclude that the error is not model-specific and therefore there are flaws in 

the corresponding ab initio potential energy surfaces. 

The Anderson-Talman model uses thermal average velocity of collisions at a 

given temperature in a way that the Baranger model does not allow.  In every case, the 

use of the thermal average energy gives predictions in the Baranger model that vary 



www.manaraa.com

 

158 
 

widely from both the Anderson-Talman model and from experiment.  Specifically, using 

the thermal average energy takes a constant-energy slice of the phase versus energy 

versus J plots (for example, a constant-energy slice of Figs. 2.5e-f), which then causes the 

Baranger model to consistently underestimate the broadening rate (section 3.10.1) at any 

given temperature. 

The calculations of scattering phase shifts, scattering phase shift differences, and 

line broadening and shift are far more sensitive to flaws in the initial reactant Moller 

states than are calculations of scattering cross-sections (section 3.10.2).  Shift calculations 

are extremely sensitive because of the sensitivity to minute phase shift differences that 

appears in the sine term in equation (2.110b). 

Ultimately, agreement among broadening coefficients is not sufficiently good to 

identify conclusively which model is “correct” for a given set of ab initio potential 

energy surfaces, at least at the temperatures at which experimental data have been 

measured.  In most cases, the predictions of the Baranger and Anderson-Talman models 

diverge at low temperatures, so low-temperature experiments may provide a needed 

discriminator between the models. 

 

4.2 Recommendations for Future Work 

 There is still a great deal of theoretical work to be done in this area, from the 

calculation of potential energy surfaces to refinement of our scattering model and the 

Baranger model.  Any error in the ab initio potential energy surfaces is reflected in the 

final results.  In particular, we suspect errors in the surfaces for M + Ar because both the 

Baranger model and the Anderson-Talman model give results that vary significantly from 

experiment for these pairs.  It is not clear to what degree this implementation of the 

wavepacket propagation technique and the Baranger model are sensitive to differences in 

the potential energy surfaces.  It is a theoretically straightforward, but computationally 

intensive, process to replace the potential energy surfaces with new inputs.  One could 

use different classes of potential, such as the Lennard-Jones (6-12) potential that was 
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used in Chapter II as an estimating tool for the Anderson-Talman model.  Hager has 

achieved some success with the Anderson-Talman model using a 6-8 potential (Hager 

and Perram, in preparation), and such a potential could be tested in the context of the 

Baranger model.  Testing different sorts of potentials with more localized and 

controllable characteristics might give more information about what parts of the potential 

energy surfaces give rise to which characteristics in the broadening and shift rates and 

intermediate calculations such as the scattering phase shift differences or those 

calculations illustrated in Figs. 2.5e-h. 

 The results of this work are sensitive to any flaws in the reactant Moller states, so 

there is always work to be done to refine those states, since the entire computational 

model depends on these reactant Moller states.  In particular, we have discovered that the 

shift coefficients are extremely sensitive to such flaws.  This sensitivity is caused by the 

sine term in (2.110b); for small phase shift differences, sin 𝜃𝐽(𝐸) ≈ 𝜃𝐽(𝐸) but 

cos 𝜃𝐽(𝐸) ≈ 1, so small but nonzero phase shift differences cause the integrand in 

(2.110a) to vanish but the integrand (2.110b) to remain nonzero.  This nonvanishing term 

then multiplies the Boltzmann distribution and causes a J-independent ridge.  A small but 

nonzero phase shift difference appears, along with the resulting nonphysical ridge, if the 

Moller reactant state generation has not propagated far enough into the distant past to 

escape the centrifugal effective potential (see Fig. 2.4a for details).  Fig. 3.10.2c shows 

the sensitivity of the sine term to small phase shifts resulting from inadequate Moller 

reactant states.  Future work might focus on generating new Moller states, which would 

require propagating the initial Gaussian even farther into the distant past to generate the 

intermediate Moller state.  Such work would be necessary in order to calculate phase 

shifts for higher values of J, which would be required in order to calculate broadening 

and shift coefficients at temperatures higher than 800 K (using the Allard coupling) or 

500 K (using the Baranger coupling). 

 Future work might simply start a Gaussian wavepacket at a very large separation 

distance, which could ameliorate the problem with generating reactant Moller states; in 

essence, the Gaussian wavepacket becomes our reactant state for which we can generate 
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an analytic form.  However, the improvement of a single problem is counteracted by the 

introduction of two additional problems.  First, the reactant state has to be propagated 

through the collision process and back out to where it started; this counteracts any 

computational savings one might have gleaned from the lack of Moller state propagation.  

Second, propagating from a larger separation requires a larger computational grid in 

order to accommodate the space containing the wavepacket and the origin, which in turn 

requires FFT code capable of accommodating such a large space.  This second problem 

might be lessened by adopting a moving reference frame that is just large enough to 

accommodate the wavepacket as it spreads, but we have not attempted this and we are 

unsure to what degree new error might be introduced through the new propagation 

algorithm. 

 To calculate the phase shift differences in Fig. 2.5d, phase shifts for the excited 

and ground states were extended linearly from the energy limits of our calculations (E = 

0.0075 Hartree) to a larger energy (E = 0.012 Hartree) in order to accommodate 

calculations at higher temperatures.  Future work might entail rigorous calculations for 

higher energies, which will also require calculations at higher values of J to capture the 

full collision process.  Such work will be necessary to perform broadening and shift 

calculations at higher temperatures than about 800 K. 

Finally, we see only the distant past (or what we call the “infinite” past) and 

distant future before and after the collision (Lewis, 2011).  Because we can only look at 

the distant past and future, we are stuck with the impact limit of Baranger, which assumes 

that the duration of a collision is short compared with the time between collisions.  Any 

work to take us out of the impact limit will necessarily involve being able to view events 

that occur during a collision, rather than just the distant past and future, and will require a 

complete reworking of the computational algorithm. 
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